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Abstract
In this work, polyvinylpyrrolidone/titanium tetraisopropoxide (PVP/TTIP) composite nanofibers were prepared by elec-

trospinning from alcoholic solutions. The morphology and the properties of the fibers were investigated by SEM, Raman

spectroscopy, and XRD. The thermal properties and the evolved gases were studied in detail by TG/DTA-MS. The as-spun

800–900-nm-thick PVP/TTIP fibers were then, respectively, annealed in different atmospheres (air and nitrogen) and at

different temperatures (550 �C, 900 �C) in order to obtain anatase and rutile TiO2 nanofibers. The investigation of the

thermal properties was important before the preparation of the oxide nanofibers, because based on them the crystallinity

and the composition of the TiO2 nanofibers could be controlled. Metal oxide nanofibers with a slightly smaller diameter,

made up mostly by anatase TiO2, were successfully prepared when the annealing was done at 550 �C, while at 900 �C,
rutile TiO2 fibers were obtained. If nitrogen atmosphere was applied, the nanofibers contained some carbon residue as well.
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Introduction

The preparation of nanocomposites with well-controllable

morphology and properties nowadays is a really important

task [1, 2]. Many different methods exist for synthesizing

various composites, one of them is electrospinning [3–6],

by which technique uniform nanofibers can be produced

with high specific surface area. Although it has a simple

setup, the reproducibility is exceptional and the properties

(e.g., diameter, specific surface area, composition) of the

product can be controlled precisely. During the process,

high voltage is applied to a polymer solution or melt, which

can also contain the precursor salt of metal oxides. Due to

the electric field, charged jets erupt from the surface of the

liquid, which stretch to ultrathin continuous fibers and dry

mid-flight before reaching the grounded collector. The use

of electrospinning allows the production of nanomaterials

with diverse properties; thus, there is a wide variety of

applications for them. There are examples when the elec-

trospun nanofibers were applied in air filtration [7], pho-

tocatalysis [8, 9], gas sensing [10, 11], thermal energy

storage [12], optical sensors [13], or for encapsulating

biomaterials [14], etc.

Numerous metal oxide nanofibers (e.g., ZnO, TiO2,

MnO2, WO3, V2O5, NiO, SnO2, Fe2O3) [15] or composites

(e.g., NiO/ZnO [16], SnO2/TiO2 [17], carbon/MnO2 [18])

containing different metal oxides can be easily prepared by

electrospinning. Out of these oxides, TiO2 nanofibers are

the most widely researched. They can be used in gas

sensing [19], photocatalysis [20], solar cells [21], electro-

chemical biosensing [22], etc. For the preparation of TiO2,

many precursors are available, e.g., titanium tetrabutoxide,

titanium chloride, titanium tetraisopropoxide, etc. These all

have different properties (solubility, thermal stability, etc.),
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and consequently, choosing the precursor is based on what

purpose the nanomaterial is prepared for. In many of the

applications, the thermal stability of the sample is of great

importance [23], and because of this, it has to be studied

thoroughly.

In this work, polyvinylpyrrolidone/titanium tetraiso-

propoxide (PVP/TTIP) nanofibers were prepared from their

alcoholic solution by electrospinning. Later from the PVP/

TTIP composite, anatase and rutile TiO2 nanofibers were

prepared by annealing at different temperatures (550 �C
and 900 �C, respectively) and in different atmospheres

(oxidative and inert). The nanocomposite prepared by

electrospinning and the different TiO2 nanofibers were

investigated by scanning electron microscopy (SEM),

X-ray diffraction (XRD), and Raman spectroscopy.

To prepare oxide nanofibers from the electrospun fibers

and also to be able to control the crystallinity and com-

position of the fibers, it was important to study the thermal

properties of the PVP/TTIP fibers thoroughly. The thermal

properties of the composite were investigated in air and

nitrogen atmospheres by simultaneous thermogravimetry/

differential thermal analysis (TG/DTA). The evolved gases

were analyzed by on-line coupled mass spectrometry (TG/

DTA-MS) [24–26], which was previously not done in the

literature when these precursors were used for the prepa-

ration of TiO2 nanofibers [27].

Experimental

Electrospinning was done using a homemade setup. For the

preparation of the PVP/TTIP composite fibers, 1 g of

titanium tetraisopropoxide (TTIP, Ti(OiPr)4 by Sigma-

Aldrich) was dissolved in the mixture of 1 cm3 of acetic

acid (AcOH) and 1 cm3 of ethanol (EtOH). The solution

was stirred for 15 min at room temperature. After this,

0.5 g of polyvinylpyrrolidone [PVP, (C6H9NO)n, K-90 by

Merck] was separately dissolved in 3 cm3 of ethanol. The

two solutions were then mixed together and stirred for 1 h

at room temperature before the electrospinning [28]. The

electrospinning was done at 25 kV voltage, the character-

istic distance was approximately 25 cm, and a feeding rate

of 4 cm3 h-1 was used. The fibers were collected on an Al

foil screen covered by a polyethylene sheet.

After the preparation of the composite nanofibers, the

thermal properties were investigated. The measurements

were carried out in an SDT 2960 Simultaneous DTA/TGA

(TA Instruments Inc.) thermal analyzer. The samples were

heated up to 900 �C using a heating rate of 10 �C min-1 in

air and inert (nitrogen) atmospheres as well. Evolved gases

were measured by a ThermoStar GSD 200 (Balzers

Instruments) quadrupole mass spectrometer (MS) in mul-

tiple ion detection (MID) mode. The selected m/z ions

could be measured in 64 channels simultaneously. A heated

(200 �C) 100% methyl deactivated fused silica capillary

provided the on-line coupling.

Based on the TG results, the PVP/TTIP fibers were later

annealed at different temperatures in order to produce both

anatase and rutile TiO2 nanofibers. The temperatures were

chosen based on the known phase transformations of TiO2.

Except for extremely small particles, at atmospheric pres-

sure, the anatase-to-rutile transition is around 600 �C [29].

Thus, for preparing anatase TiO2 fibers, the composite was

heated up to 550 �C by which temperature the polymer

completely burned out. Rutile TiO2 nanofibers were

achieved by annealing at 900 �C. The annealing was car-

ried out in both air and nitrogen. In all cases, the heating

rate was 10 �C min-1.

The morphology of all samples was studied by scanning

electron microscopy (SEM) in a JEOL JSM-5500LV

scanning electron microscope. The measurements were

done at 20 kV voltage. Before the measurement, the

nanofibers were coated with a thin Au/Pd layer in a sputter

coater.

The XRD patterns were recorded by a PANalytical

X’pert Pro MPD X-ray diffractometer using Cu Ka

irradiation.

Raman spectra were measured by a LabRam system

(Horiba Jobin–Yvon, Lyon, France) coupled with an

external 532 nm Nd-YAG laser source (Sacher

Lasertechnik, Marburg, Germany).

Results and discussion

Based on the SEM pictures, the as-prepared PVP/TTIP

fibers (Fig. 1a) were fairly uniform and had a diameter of

about 800–900 nm. No bead formation could be observed.

The thermal analysis of these fibers was done in both

oxidative (air) and inert atmospheres (N2).

On the TG curve in nitrogen atmosphere (Fig. 2) till

100 �C, there was just a small mass loss (* 6%), which

could be assigned as the loss of physically adsorbed water

and a very small amount of solvent that was used during

the electrospinning. After this, on the TG curve, only one

larger step could be seen between 250 �C and 600 �C,
which was endothermic. At 250 �C, based on the MS

spectra, just the TTIP started to decompose, which can be

proved by the appearance of the methyl (m/z = 15) and the

isopropoxide (m/z = 59) fragments (Table 1). Then, from

around 280–300 �C, the PVP begun to decompose as well

(a PVP fragment at m/z = 84 and the PVP monomer at m/

z = 111 appeared on the MS spectra). In nitrogen, the

decomposition of the PVP extremely stretched out and the

organic compounds could not burn out totally. Caused by
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this, the final product with a remaining mass of * 30%

also contained some carbon residue beside TiO2.

In air (Fig. 3), the decomposition started similarly with a

mass loss of about 6% of water by 100 �C. The intense

decomposition of the sample started at around 250 �C and

consisted of two exothermic steps. Taking into account the

MS results as well, it was obvious that the degradation

again started with the TTIP (appearance of the fragment m/

z = 59) (Table 1). In air, the organic material started to

burn, and the endothermic heat of decomposition was

overcompensated by the exothermic combustion heat,

leading to exothermic DTA peaks. At around 350 �C, the
decomposition was so rapid that the generated heat led to

the excision of the temperature set by the heating program.

This was indicated by the retraction of all the TG, DTG,

and DTA curves. The degradation of the PVP also started

later in air than that of the TTIP, and at first, the polymer

chains of the PVP broke up and the side chains were

severed, so only the organic backbone of the polymer

remained, which was the last to decompose. The whole

process was followed by the evolution of CO2 as well. In

air, by 350 �C, the TTIP decomposed totally, and by

550 �C, all the organic char residues from the PVP burnt

out completely. The remaining mass was around 24%, and

the final product only contained TiO2. This was later

confirmed by the XRD measurements.

On the SEM pictures after the annealing (Fig. 1b–e), it

was visible that in all the cases the fibrous structure was

maintained, but the fibers broke into shorter pieces. The

diameter slightly decreased after the annealing in N2

(700–800 nm), and the shrinking of the fibers was more

significant when air was used as atmosphere

(600–700 nm).

On the XRD diffractograms (Fig. 4), it could be seen

that the electrospun PVP/TTIP fibers were amorphous.

After annealing either in air or in nitrogen at 550 �C, only
peaks referring to TiO2 could be found, the nanofibers

contained mostly anatase TiO2 (ICDD 01-083-2243). A

small peak at 27� appeared as well, indicating the presence

of a smaller amount of rutile phase beside anatase. The

chosen temperature was close to the phase transition tem-

perature, so the appearance of this peak could be explained

by that the formation of the rutile phase has already begun

in a small part of the samples. When the annealing tem-

perature was higher (900 �C), the fibers crystallized mostly

in rutile form (ICDD 00-021-1276); however, a part of the

sample was still anatase, based on the peaks.

The Raman spectra (Fig. 5) were in agreement with the

XRD results. At 900 �C, the peaks of rutile TiO2 can be

Fig. 1 SEM images of a PVP/

TTIP fibers; b fibers annealed at

550 �C in N2; c fibers annealed

at 900 �C in N2; d fibers

annealed at 550 �C in air;

e fibers annealed at 900 �C in

air
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seen on the spectra (the peaks at around 243 cm-1,

447 cm-1, and 612 cm-1 can be, respectively, assigned to

the second-order Raman scattering, Eg and A1g modes of

rutile TiO2 [28, 30]), and also some small peaks of the

anatase remained. However, at 550 �C, only the anatase

TiO2 peaks were visible. (The peaks at 144 cm-1,

403 cm-1, 520 cm-1, 639 cm-1 are the Eg, B1g, A1g or B2g,

and Eg modes of the anatase phase [8, 31], respectively.)

The Raman studies also confirmed that in nitrogen as

expected from the TG/DTA-MS results some carbon resi-

due remained (D and G bands of carbon appeared [32, 33]),

Table 1 Fragments of the materials in TG/DTA-MS measurement

m/z Fragment Molecular formula Origin

15 CH3 CH3 TTIP

18 H2O H2O PVP, TTIP

43 CH3–CH–CH3 C3H7 TTIP

44 CO2 CO2 PVP, TTIP

59 Isopropoxide C3H7O TTIP

84 PVP fragment C4H6NO PVP

111 PVP monomer C6H9NO PVP
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Fig. 3 Thermal analysis of the PVP/TTIP composite fibers in air
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while in air the polymer was burnt completely, and only the

peak of crystalline TiO2 appeared.

Conclusions

Polyvinylpyrrolidone/titanium tetraisopropoxide (PVP/

TTIP) nanofibers with a diameter of 800–900 nm were

prepared by electrospinning. The thermal properties of

these fibers were thoroughly studied by TG/DTA, and the

steps of decomposition were explained based on the results

and the evolved gas analysis; the latter was previously not

measured for these materials, when they were used for

electrospinning. To be able to control the crystallinity and

composition of the fibers, when later they were annealed to

prepare TiO2 nanofibers, studying the thermal properties

was also important. For annealing, two different tempera-

tures (550 �C and 900 �C) were chosen and also two dif-

ferent atmospheres were used. At 550 �C anatase and at

900 �C, rutile TiO2 fibers could be prepared. When the

annealing was done in nitrogen, besides the oxide, the

fibers contained a small amount of carbon as well. Con-

trolling the carbon content could be useful in the future, if

the fibers are used as photocatalyst [28], because the light

absorption could be shifted to the visible range if the

sample also contains a small amount of carbon in it.
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