Skip to main content
Log in

Physical–chemical characterization studies of ketoprofen for orodispersible tablets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The development of orodispersible tablets containing ketoprofen (KTP) offers versatility in administration to patients with swallowing difficulties. The rational development of a medication requires characterization studies for the solid state of the active ingredient and compatibility with excipients to thus ensure a high-quality, safe and effective pharmaceutical form. Therefore, compatibility studies were performed by differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG), spectroscopy techniques (DRIFT, DRX, Raman), and morphological analysis by scanning electron microscopy in order to obtain thermal characterization of the drug. The DSC curve demonstrated an endothermic, symmetrical and evident fusion event (Tpeak = 96.37 °C, ΔH = −120.92 J g−1) and the TG/DTG curve showed mass loss of Δm = 92.45% relative decomposition. For stability analysis, the non-isothermal kinetic study was carried out. The granulate KTP showed higher Ea = 77.30 ± 0.25 kJ mol−1, hence being more stable than pure KTP (Ea = 54.69 ± 1.53 kJ mol−1). Regarding the compatibility study, a displacement of the drug’s melting point to lower temperatures was observed. However, a more significant interaction was evident with magnesium stearate. Further studies were performed using spectroscopic techniques of DRIFT, Raman, X-ray diffraction and by scanning electron microscopy, which demonstrated that there was no change in physicochemical properties of pure KTP. Therefore, through this study it is possible to produce orodispersible tablets by compression and freeze-drying methods containing ketoprofen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rençber S, Karavana Y, Özyazici M. Bioavailability file: ketoprofen. J Pharm Sci. 2009;34:203–16.

    Google Scholar 

  2. United States Pharmacopeia and National Formulary (USP 32 - NF 27). Rockville: United States Pharmacopeia Convention; 2009, p. 2739.

  3. BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). Farmacopeia Brasileira. 5th ed. Distrito Federal Brasília: Agência Nacional de Vigilância Sanitária (ANVISA); 2010.

    Google Scholar 

  4. Asensio C, Levoin N, Guillaume C, Guerquin MJ, Rouguieg K, Chrétien F, Chapleur Y, Netter P, Minn A, Lapicque F. Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochem Pharmacol. 2007;73(3):405–16.

    Article  CAS  PubMed  Google Scholar 

  5. Levoin N, Blondeaua C, Guillaumea C, Grandcolas L, Chretien F, Jouzeau JY, Benoit E, Chapleur Y, Netter P, Lapicque F. Elucidation of the mechanism of inhibition of cyclooxygenases by acyl-coenzyme A and acylglucuronic conjugates of ketoprofen. Biochem Pharmacol. 2004;68(10):1957–69.

    Article  CAS  PubMed  Google Scholar 

  6. Seymour RA, Kelly PJ, Hawkesford JE. The efficacy of ketoprofen and paracetamol (acetaminophen) in postoperative pain after third molar surgery. Br J Clin Pharmacol. 1996;41(6):581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porażka J, Karbownik A, Murawa D, Spychala A, Firlej M, Grabowski T, Murawa P, Grześkowiak E, Szałek E. The pharmacokinetics of oral ketoprofen in patients after gastric resection. Pharmacol Rep. 2017;69(2):296–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shohin IE, Kulinich JI, Ramenskaya GV, Abrahamsson B, Kopp S, Langguth P, Polli JE, Shah VP, Groot DW, Barends DM, Dressman JB. Biowaiver monographs for immediate-release solid oral dosage forms: ketoprofen. J Pharm Sci. 2012;101(10):3593–603.

    Article  CAS  PubMed  Google Scholar 

  9. Prabhu P, Malli R, Koland M, Vijaynarayana K, D’Souza U, Harish NM, Shastry CS, Charyulu RN. Formulation and evaluation of fast dissolving oral film of levocetirizine di hydrochloride. Int J Pharm Investig. 2011;4(1):337–441.

    Google Scholar 

  10. Goel H, Rai P, Rana V, Tiwary AK. Orally disintegrating systems: innovations in formulation and technology. Recent Pat Drug Deliv Formul. 2008;2(3):258–74.

    Article  CAS  PubMed  Google Scholar 

  11. Verma RK, Garg S. Compatibility studies between isosorbide mononitrate and selected excipients used in the development of extended release formulations. J Pharm Biomed Anal. 2004;35(3):449–58.

    Article  CAS  PubMed  Google Scholar 

  12. Araujo AAS, Cides LC, Storpirtis S, Matos JR, Bruns RE. Effects of experimental conditions on the estimation of kinetic parameters of the thermal decomposition of AZT using factorial design. J Therm Anal Calorim. 2005;79(3):697–701.

    Article  CAS  Google Scholar 

  13. Murakami FS, Lang KL, Mendes C, Cruz AP, Carvalho Filho MAS, Silva MAS. Physico-chemical solid-state characterization of omeprazole sodium: thermal, spectroscopic and crystallinity studies. J Pharm Biomed Anal. 2009;49(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  14. Tiţa B, Fuliaş A, Bandur G, Marian E, Tiţa D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ortega A. A simple and precise linear integral method for isoconversional data. Termochimica Acta. 2008;474(1–2):81–6.

    Article  CAS  Google Scholar 

  16. Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68(1):131–9.

    Article  CAS  Google Scholar 

  17. Pomerantsev AL, Kutsenova AV, Rodionova OY. Kinetic analysis of non-isothermal solid-state reactions: multi-stage modeling without assumptions in the reaction mechanism. Phys Chem Chem Phys. 2017;19:3606–15.

    Article  CAS  PubMed  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  20. Murakami FS, Bernardi LS, Pereira RN, Valente BR, Vasconcelos EC, Carvalho Filho MAS, Silva MAS. Comparative behavior studies of cinnamic acid using isothermal and nonisothermal kinetic methods. Pharm Chem J. 2009;43(12):716–20.

    Article  CAS  Google Scholar 

  21. Vueba ML, Pina ME, Veiga F, Sousa JJ, de Carvalho BLAE. Conformational study of ketoprofen by combined DFT calculation and Raman spectroscopy. Int J Pharm. 2006;307(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  22. Fruijtier-Pöllot C. The toxicological mode of action and the safety of synthetic amorphous sílica—a nanostructured material. Toxicology. 2012;294:61–79.

    Article  CAS  Google Scholar 

  23. Mura P, Gratteri P, Faucci MT. Compatibility studies of multicomponent tablet formulations. DSC and experimental mixture design. J Therm Anal Calorim. 2002;68(2):541–51.

    Article  CAS  Google Scholar 

  24. Veiga A, Oliveira PR, Bernardi LS, Mendes C, Silva MS, Sangoi MS, Janissek PR, Murakami FS. Solid-state compatibility studies of a drug without melting point: the case of omeprazole sodium. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6756-8.

    Article  Google Scholar 

  25. Peres-Filho MJ, Gaeti MPN, Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104(1):255–60.

    Article  CAS  Google Scholar 

  26. Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119(1):71–9.

    Article  CAS  Google Scholar 

  27. Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermoanalytical study of some anti-inflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–70.

    Article  CAS  Google Scholar 

  28. Dragan F, Kacso I, Martin F, Borodi G, Bratu I, Costuleanu M, Sandu IG, Poroch V. Solid state interactions between ketoprofen and excipients in solid dosage forms. Rev Chim. 2016;67(10):2043–8.

    CAS  Google Scholar 

  29. Bumbrah SG, Sharma RM. Raman spectroscopy—basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci. 2016;6(3):209–2015.

    Article  Google Scholar 

  30. Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289–99.

    Article  CAS  PubMed  Google Scholar 

  31. Yadav PS, Kumar V, Singh PU, Bhat RH, Mazumder B. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and D-mannitol. Saudi Pharm J. 2013;21(1):77–84.

    Article  PubMed  Google Scholar 

  32. Dixit M, Parthasarathi KK, Rudra SV. Effect of different crystallization techniques on the dissolution behavior of ketoprofen. Trop J Pharm Res June. 2013;12(3):317–22.

    Google Scholar 

  33. Shohin IE, Kulinich JI, Ramenskaya GV, Vasilenko GF. Evaluation of in vitro equivalence for drugs containing BCS class II compound ketoprofen. Dissolution Technol. 2011;19(1):26–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Research Council (CNPq) by their financial support and the Academic Publishing Advisory Center (CAPA) of Federal University of Parana for assistance with English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio S. Murakami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.J., Stofella, N.C.F., Veiga, A. et al. Physical–chemical characterization studies of ketoprofen for orodispersible tablets. J Therm Anal Calorim 133, 1521–1533 (2018). https://doi.org/10.1007/s10973-018-7195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7195-x

Keywords

Navigation