Skip to main content
Log in

The flame retardancy and thermal stability properties of flame-retarded epoxy resins based on α-hydroxyphosphonate cyclotriphosphazene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An α-hydroxyphosphonate cyclotriphosphazene compound, hexa-(4-diethylphosphate-hydroxymethyl-phenoxy)-cyclotriphosphazene (HDHPCP), was synthesized and well characterized by FTIR, NMR and elemental analysis. The additive HDHPCP was blended into diglycidyl ether of bisphenol A to prepare flame-retardant epoxy resins (EP). Thermal properties, combustion behaviors and mechanical properties of the epoxy resins cured with 4,4-diaminodiphenyl methane were investigated. The results of thermogravimetric analysis revealed that HDHPCP improved char formation ability of the materials at high temperature and reduced the maximum mass loss rate. Moreover, the limiting oxygen index values of cured EP composites increased from 23.5% for pure EP to 30.7% and reached vertical burning UL-94 V-0 rating for sample with 20 mass% HDHPCP, which demonstrated that the prepared EP thermosets exhibited good flame retardancy. Microscale combustion calorimetry data displayed that peak heat release rate, total heat release and heat release capacity decreased obviously with the increasing content of HDHPCP. Furthermore, the addition of HDHPCP increased impact strengths and decreased the flexural strengths slightly of the flame-retarded EP thermosets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spontón M, Ronda JC, Galià M, Cádiz V. Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. J Polym Sci Polym Chem. 2007;45(11):2142–51.

    Article  Google Scholar 

  2. Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, Huang Y, Colorado HA, Wei S, Guo Z. Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res. 2013;52(23):7718–28.

    Article  CAS  Google Scholar 

  3. Xu G, Xu M, Li B. Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polym Degrad Stab. 2014;109:240–8.

    Article  CAS  Google Scholar 

  4. Wan J, Gan B, Li C, Molina-Aldareguia J, Kalali EN, Wang X, Wang D. A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: synthesis, curing kinetics and structure–property relationship. Chem Eng J. 2016;284:1080–93.

    Article  CAS  Google Scholar 

  5. Lee J, Bhattacharyya D, Zhang M, Yuan Y. Mechanical properties of a self-healing fibre reinforced epoxy composites. Compos Part B-Eng. 2015;78:515–9.

    Article  CAS  Google Scholar 

  6. Yuan Y, Ye X, Rong M, Zhang M, Yang G, Zhao J. Self-healing epoxy composite with heat-resistant healant. ACS Appl Mater Interfaces. 2011;3(11):4487–95.

    Article  CAS  Google Scholar 

  7. Lu S, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27(8):1661–712.

    Article  CAS  Google Scholar 

  8. Hu Q, Peng P, Peng S, Liu J, Liu X, Zou L, Chen J. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J Therm Anal Calorim. 2017;128(1):201–10.

    Article  CAS  Google Scholar 

  9. Sut A, Greiser S, Jäger C, Schartel B. Synergy in flame-retarded epoxy resin. J Therm Anal Calorim. 2017;128(1):141–53.

    Article  CAS  Google Scholar 

  10. Bourbigot S, Duquesne S. Fire retardant polymers: recent developments and opportunities. J Mater Chem. 2007;17(22):2283–300.

    Article  CAS  Google Scholar 

  11. Liu W, Varley RJ, Simon GP. Phosphorus-containing diamine for flame retardancy of high functionality epoxy resins. Part II. The thermal and mechanical properties of mixed amine systems. Polymer. 2006;47(6):2091–8.

    Article  CAS  Google Scholar 

  12. Wang J, Liu Y, Zhao H, Liu J, Wang D, Song Y, Wang Y. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stab. 2009;94(4):625–31.

    Article  CAS  Google Scholar 

  13. Mercado LA, Reina JA, Galià M. Flame retardant epoxy resins based on diglycidyloxymethylphenylsilane. J Polym Sci Polym Chem. 2006;44(19):5580–7.

    Article  CAS  Google Scholar 

  14. Canadell J, Mantecón A, Cádiz V. Copolymerization of a silicon-containing spiroorthoester with a phosphorus-containing diglycidyl compound: influence on flame retardancy and shrinkage. Polym Degrad Stab. 2007;92(10):1934–41.

    Article  CAS  Google Scholar 

  15. Spontón M, Mercado LA, Ronda JC, Galià M, Cádiz V. Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins. Polym Degrad Stab. 2008;93(11):2025–31.

    Article  Google Scholar 

  16. Li X, Ou Y, Shi Y. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate. Polym Degrad Stab. 2002;77(3):383–90.

    Article  CAS  Google Scholar 

  17. Alcón MJ, Ribera G, Galià M, Cádiz V. Advanced flame-retardant epoxy resins from phosphorus-containing diol. J Polym Sci Polym Chem. 2005;43(16):3510–5.

    Article  Google Scholar 

  18. Artner J, Ciesielski M, Walter O, Döring M, Perez RM, Sandler JKW, Altstädt V, Schartel B. A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng. 2008;293(6):503–14.

    Article  CAS  Google Scholar 

  19. Gao M, Yang S. A novel intumescent flame-retardant epoxy resins system. J Appl Polym Sci. 2010;115(4):2346–51.

    Article  CAS  Google Scholar 

  20. Winey KI, Kashiwagi T, Mu M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull. 2007;32(04):348–53.

    Article  CAS  Google Scholar 

  21. Martín C, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis of novel boron-containing epoxy–novolac resins and properties of cured products. J Polym Sci Polym Chem. 2006;44(21):6332–44.

    Article  Google Scholar 

  22. Tseng CH, Hsueh HB, Chen CY. Effect of reactive layered double hydroxides on the thermal and mechanical properties of LDHs/epoxy nanocomposites. Compos Sci Technol. 2007;67(11–12):2350–62.

    Article  CAS  Google Scholar 

  23. Guo B, Jia D, Cai C. Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J. 2004;40(8):1743–8.

    Article  CAS  Google Scholar 

  24. Schartel B, Knoll U, Hartwig A, Pütz D. Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants. Polym Adv Technol. 2006;17(4):281–93.

    Article  CAS  Google Scholar 

  25. Wang Z, Wei P, Qian Y, Liu J. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos Part B-Eng. 2014;60:341–9.

    Article  Google Scholar 

  26. Sun J, Wang X, Wu D. Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics. ACS Appl Mater Interfaces. 2012;4(8):4047–61.

    Article  CAS  Google Scholar 

  27. Tai Q, Hu Y, Yuen RKK, Song L, Lu H. Synthesis, structure-property relationships of polyphosphoramides with high char residues. J Mater Chem. 2011;21(18):6621–7.

    Article  CAS  Google Scholar 

  28. Bai Z, Song L, Hu Y, Gong X, Yuen RKK. Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound. J Anal Appl Pyrol. 2014;105:317–26.

    Article  CAS  Google Scholar 

  29. Luo Q, Yuan Y, Dong C, Liu S, Zhao J. Intumescent flame retardancy of a DGEBA epoxy resin based on 5,10-dihydro-phenophosphazine-10-oxide. RSC Adv. 2015;5(84):68476–84.

    Article  CAS  Google Scholar 

  30. Zhang X, Zhong Y, Mao Z. The flame retardancy and thermal stability properties of poly (ethylene terephthalate)/hexakis (4-nitrophenoxy) cyclotriphosphazene systems. Polym Degrad Stab. 2012;97(8):1504–10.

    Article  CAS  Google Scholar 

  31. Wang J, Su X, Mao Z. The flame retardancy and thermal property of poly (ethylene terephthalate)/cyclotriphosphazene modified by montmorillonite system. Polym Degrad Stab. 2014;109:154–61.

    Article  CAS  Google Scholar 

  32. Li J, Pan F, Zeng X, Xu H, Zhang L, Zhong Y, Sui X, Mao Z. The flame-retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (para-allyloxyphenoxy) cyclotriphosphazene systems. J Appl Polym Sci 2015;132(44).

  33. Shin YJ, Ham YR, Kim SH, Lee DH, Kim SB, Park CS, Yoo YM, Kim JG, Kwon SH, Shin JS. Application of cyclophosphazene derivatives as flame retardants for ABS. J Ind Eng Chem. 2010;16(3):364–7.

    Article  CAS  Google Scholar 

  34. Guo Y, Qiu J, Tang H, Liu C. High transmittance and environment-friendly flame-resistant optical resins based on poly(methyl methacrylate) and cyclotriphosphazene derivatives. J Appl Polym Sci. 2011;121(2):727–34.

    Article  CAS  Google Scholar 

  35. Yuan C, Chen S, Tsai C, Chiu Y, Chen-Yang YW. Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: synthesis and properties. Polym Adv Technol. 2005;16(5):393–9.

    Article  CAS  Google Scholar 

  36. El Gouri M, El Bachiri A, Hegazi SE, Rafik M, El Harfi A. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym Degrad Stab. 2009;94(11):2101–6.

    Article  Google Scholar 

  37. Xu J, He Z, Wu W, Ma H, Xie J, Qu H, Jiao Y. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl)phenoxy]cyclotriphosphazene. J Therm Anal Calorim. 2013;114(3):1341–50.

    Article  CAS  Google Scholar 

  38. Zhang X, Zhang L, Wu Q, Mao Z. The influence of synergistic effects of hexakis (4-nitrophenoxy) cyclotriphosphazene and POE-g-MA on anti-dripping and flame retardancy of PET. J Ind Eng Chem. 2013;19(3):993–9.

    Article  CAS  Google Scholar 

  39. Yang Y, Liu J, Cai X. Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system. J Therm Anal Calorim. 2016;126(2):571–83.

    Article  CAS  Google Scholar 

  40. Yang Y, Kong W, Wang Y, Cai X. Synthesis of tris(phenoxy)trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate. J Therm Anal Calorim. 2015;122(2):805–16.

    Article  CAS  Google Scholar 

  41. Muraki T, Ueta M, Ihara E, Inoue K. Enhancement of thermal stability of polystyrene and poly(methyl methacrylate) by cyclotriphosphazene derivatives. Polym Degrad Stab. 2004;84(1):87–93.

    Article  CAS  Google Scholar 

  42. Zhao X. Synthesis and application of a durable phosphorus/silicon flame-retardant for cotton. J Text Inst. 2010;101(6):538–46.

    Article  CAS  Google Scholar 

  43. Chang S, Condon B, Graves E, Uchimiya M, Fortier C, Easson M, Wakelyn P. Flame retardant properties of triazine phosphonates derivative with cotton fabric. Fibers Polym. 2011;12(3):334–9.

    Article  CAS  Google Scholar 

  44. Failla S, Consiglio G, Finocchiaro P. New diamine phosphonate monomers as flame-retardant additives for polymers. Phosphorus Sulfur. 2011;186(4):983–8.

    Article  CAS  Google Scholar 

  45. Hoang D, Kim J, Jang BN. Synthesis and performance of cyclic phosphorus-containing flame retardants. Polym Degrad Stab. 2008;93(11):2042–7.

    Article  CAS  Google Scholar 

  46. Zhou L, Zhang G, Li J, Feng Y. Synthesis of α-hydroxyphosphonate cyclotriphosphazene under solvent-free conditions with a basic catalyst. Phosphorus Sulfur. 2016;191(9):1194–8.

    Article  CAS  Google Scholar 

  47. Liu R, Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym Degrad Stab. 2009;94(4):617–24.

    Article  CAS  Google Scholar 

  48. Zhu S, Shi W. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polym Degrad Stab. 2003;80(2):217–22.

    Article  CAS  Google Scholar 

  49. You G, Cheng Z, Peng H, He H. Synthesis and performance of a novel nitrogen-containing cyclic phosphate for intumescent flame retardant and its application in epoxy resin. J Appl Polym Sci 2015;132(16).

  50. Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol. 2004;71(1):27–46.

    Article  CAS  Google Scholar 

  51. Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci. 2007;47(10):1501–10.

    Article  CAS  Google Scholar 

  52. Morgan AB, Galaska M. Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. Polym Adv Technol. 2010;19(6):530–46.

    Article  Google Scholar 

  53. Dai K, Song L, Jiang S, Yu B, Yang W, Yuen RKK, Hu Y. Unsaturated polyester resins modified with phosphorus-containing groups: effects on thermal properties and flammability. Polym Degrad Stab. 2013;98(10):2033–40.

    Article  CAS  Google Scholar 

  54. Tobolsky AV, CTD. Properties and structure of polymers, vol. 10. New York: Wiley; 1960.

    Google Scholar 

  55. Liu W, Zhou R, Goh HLS, Huang S, Lu X. From waste to functional additive: toughening epoxy resin with lignin. ACS Appl Mater Interfaces. 2014;6(8):5810.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of Shaanxi Province (2015JM5231), and foundation for the Fundamental Research Funds for Central Universities (201510699201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, G., Li, J. et al. The flame retardancy and thermal stability properties of flame-retarded epoxy resins based on α-hydroxyphosphonate cyclotriphosphazene. J Therm Anal Calorim 129, 1667–1678 (2017). https://doi.org/10.1007/s10973-017-6319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6319-z

Keywords

Navigation