Skip to main content
Log in

Compatibility study between 2,6-diamino-3,5-dinitropyrazine-1-oxide and some high explosives by thermal and nonthermal techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This project evaluated the compatibility of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) with some common high explosives, for the development of LLM-105-based composite explosives or propellants. Both thermal techniques [differential scanning calorimetry (DSC) and vacuum stability test (VST)], and supplementary nonthermal techniques [Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD)] were used to evaluate the possible interactions between LLM-105 and selected high explosives including cyclotetramethylenetetranitroamine (HMX), 3,4-dinitrofurazanfuroxan (DNTF) and hexanitrohexazaisowurtzitane (CL-20). DSC results suggested that LLM-105/HMX and LLM-105/DNTF mixtures had a degree of incompatibility. The results of VST trials revealed that HMX and CL-20 were compatible with LLM-105. Both supplementary FTIR and XRD results confirmed the DSC results of LLM-105/HMX and LLM-105/DNTF. Analyses with all used methods have demonstrated the incompatibility for LLM-105/DNTF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lin QH, Li YC, Qi C, Liu W, Wang Y, Pang SP. Nitrogen-rich salts based on 5-hydrazino-1H-tetrazole: a new family of high-density energetic materials. J Mater Chem A. 2013;1:6776–85.

    Article  CAS  Google Scholar 

  2. Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  Google Scholar 

  3. Agrawal JP. Recent trends in high-energy materials. Prog Energy Combust. 1998;24:1–30.

    Article  CAS  Google Scholar 

  4. Qi C, Li SH, Li YC, Wang Y, Zhao XX, Ping SP. Synthesis and promising properties of a new family of high-nitrogen compounds: polyazido- and polyamino-substituted N, N’-azo-1,2,4-triazoles. Chemistry. 2012;18:16562–70.

    Article  CAS  Google Scholar 

  5. Xiang DL, Rong JL, Li J. Effect of Al/O ratio on the detonation performance and underwater explosion of HMX-based aluminized explosives. Propellants Explos Pyrotech. 2014;39(1):65–73.

    Article  CAS  Google Scholar 

  6. Wen YS, Dai XG, Han Y, Xiang Y. Reaction characteristic for various scale explosive under mild impact. J Energy Mater. 2014;32(sup1):S41–50.

    Article  Google Scholar 

  7. Hu HX. A study on the properties and applicaion of high energy density material DNTF. Acta Armamentarii. 2004;25:155–8.

    CAS  Google Scholar 

  8. Guo XD, Ou YG, Liu J, Li Q, Wang LX, Gu ZM, Li FS. Massive preparation of reduced-sensitivity nano CL-20 and its characterization. J Energy Mater. 2015;33:24–33.

    Article  CAS  Google Scholar 

  9. Schoeyer HFR, Schnorhk AJ, Korting PAOG, Va PPJ, Mul JM, Gadiot GMHJ, Meulenbrugge JJ. High-performance propellants based on hydrazinium nitroformate. J Propul Power. 1995;11:856–69.

    Article  Google Scholar 

  10. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  Google Scholar 

  11. Xu WZ, An CW, Wang JY, Dong J, Geng XH. Preparation and properties of An insensitive booster explosive based on LLM-105. Propellants Explos Pyrotech. 2013;38:136–41.

    Article  CAS  Google Scholar 

  12. Craig M, Tarver Paul AU, Tri DT. Sensitivity of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide. J Energy Mater. 2005;23(3):183–203.

    Article  Google Scholar 

  13. Pagoria P, Mitchell A, Schmidt R. Characterization of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) as an insensitive high explosive material, the 33rd ICT on energetic materials synthesis, production and application. 2002.

  14. Glascoe E, Tan AN, Koerner J, Maienschein JL. Pressure and temperature dependent deflagration rate measurements of LLM-105 and TATB based explosives. JANNAF 25th Propulsion Systems Hazards La Jolla, CA, United States, 2009.

  15. Li YB, Huang H, Li JS, Li HB. A new HMX-based low-sensitive high energy PBX explosive containing LLM-105. Chin J Explos Pyrotech. 2008;31(5):1–4.

    Google Scholar 

  16. Lin H, Zhu SG, Li HZ, Peng XH. Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem. 2013;26(11):898–907.

    Article  CAS  Google Scholar 

  17. Li HB, Cheng BB, Liu SJ, Nie FD, Li JS. Recrystallization and Properties of LLM-105. Chin J Explos Pyrotech. 2008;16(6):685–6.

    Google Scholar 

  18. Yan QL, Li XJ, Zhang LY, Li JZ, Li HL, Liu ZR. Compatibility study of trans-1, 4, 5, 8-tetranitro-1, 4, 5, 8-tetraazadecalin (TNAD) with some energetic components and inert materials. J Hazard Mater. 2008;160:529–34.

    Article  CAS  Google Scholar 

  19. Huang HF, Shi YM, Yang J, Li BP. Compatibility study of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) with some energetic materials and inert materials. J Energy Mater. 2015;33:66–72.

    Article  CAS  Google Scholar 

  20. Pang WQ, Fan XZ, Xue YN, Xu HX, Zhang W, Zhang XH, Li YL, Li Y, Shi XB. Study on the compatibility of tetraethylammonium decahydrodecaborate (BHN) with some energetic components and inert materials. Propellants Explos Pyrotech. 2013;38(2):278–85.

    Article  CAS  Google Scholar 

  21. Gołofit T, Zyśk K. Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO. J Therm Anal Calorim. 2015;119:1931–9.

    Article  Google Scholar 

  22. Haye KL, Klerk WPCD, Miszczak M, Szymanowski J. Compatibility testing of energetic materials at TNO-PML and MIAT. J Therm Anal Calorim. 2003;72(12):931–42.

    Article  Google Scholar 

  23. Neto HS, Novák C, Matos JR. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97:367–74.

    Article  Google Scholar 

  24. Araújo AAS, Bezerra MDS, Storpirtis S, Matos JDR. Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC, Determinação da temperatura de fusão, calor de fusão e pureza análise de diferentes amostras de zidovudina (AZT) por DSC. Braz J Pharm Sci. 2010;46:37–43.

    Article  Google Scholar 

  25. de Lima ÍPB, Lima NGPB, Barros DMC, Oliveira TS, Barbosa EG, Gomes APB, Ferrari M, Nascimento TGD, Aragão CFS. Compatibility study of tretinoin with several pharmaceutical excipients by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120:733–47.

    Article  CAS  Google Scholar 

  26. Liao LQ, Wei HJ, Li JZ, Fan XZ, Zheng Y, Ji YP, Fu XL, Zhang YJ, Liu FL. Compatibility of PNIMMO with some energetic materials. J Therm Anal Calorim. 2012;109(3):1–6.

    Article  Google Scholar 

  27. Beach NE, Canfield VK. Compatibility of explosives with polymers(III). Plastic Rep. 1971;40:73–6.

  28. Myburgh A. Standardization on stanag test methods for ease of compatibility and thermal studies. J Therm Anal Calorim. 2006;85:135–9.

    Article  CAS  Google Scholar 

  29. Yılmaz GA, Şen D, Kaya ZT, Tinçer ZT. Effect of inert plasticizers on mechanical, thermal, and sensitivity properties of polyurethane-based plastic bonded explosives. J Appl Polym Sci. 2014;131:1366–73.

    Google Scholar 

  30. Klerk WD, Meer NVD, Eerligh R. Microcalorimetric study applied to the comparison of compatibility tests (VST and IST) of polymers and propellants. Thermochim Acta. 1995;269:231–43.

    Article  Google Scholar 

  31. de Lima ÍPB, Lima NGPB, Barros DMC, Oliveira TS, Mendonça CMS, Barbosa EG. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120:719–32.

    Article  Google Scholar 

  32. Tita B, Ledeti I, Bandur G, Tita D. Compatibility study between indomethacin and excipients in their physical mixtures. J Therm Anal Calorim. 2014;118(2):1293–304.

    Article  CAS  Google Scholar 

  33. Ghaderi F, Nemati M, Siahi-Shadbad MR, Valizadeh H, Monajjemzadeh F. Physicochemical evaluation and non-isothermal kinetic study of the drug–excipient interaction between doxepin and lactose. Powder Technol. 2015;286:845–55.

    Article  CAS  Google Scholar 

  34. Zhou YS, Wang BZ, Li JK, Zhou C, Hu L, Chen ZQ, Zhang ZZ. Study on synthesis, characterization and properties of 3,4-bis(4′-nitrofurazano-3′-yl)furoxan. Acta Chim Sin. 2011;69(14):1673–80.

    CAS  Google Scholar 

  35. Chadha R, Bhandar SI. Drug-excipient compatibility screening-Role of thermoanalytical and spectroscopic techniques. J Pharm Biomed. 2014;87:82–97.

    Article  CAS  Google Scholar 

  36. Desai SR, Shaikh MM, Dharwadkar SR. Preformulation compatibility studies of etamsylate and fluconazole drugs with lactose by DSC. J Therm Anal Calorim. 2003;71(2):651–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Natural Science Foundation of Jiangsu Province (BK20150780) and the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, the opening project number is KFJJ16-09M). We wish to thank Prof. Wang-hua Chen, Dr. Li-ping Chen and Dr. Zhi-wei Han et al. for their valuable advice and assistant in carrying out the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lin, Qh., Peng, Jh. et al. Compatibility study between 2,6-diamino-3,5-dinitropyrazine-1-oxide and some high explosives by thermal and nonthermal techniques. J Therm Anal Calorim 127, 2225–2231 (2017). https://doi.org/10.1007/s10973-016-5809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5809-8

Keywords

Navigation