Skip to main content
Log in

Thermal behaviors of a novel nitrogen-rich energetic compound

Hydrazinium 3,5-dinitroamino-1,2,4-triazole

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new nitrogen-rich energetic material, hydrazinium 3,5-dinitroamino-1,2,4-triazole (HDNAT), was synthesized. Thermal behavior and non-isothermal decomposition kinetics of HDNAT were studied with DSC and TG/DTG methods. The non-isothermal decomposition kinetic equation is \(\frac{{{\text{d}}\alpha }}{{{\text{d}}T}} = \frac{{10^{19.37} }}{\beta }6(1 - \alpha )^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} [1 - (1 - \alpha )^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} ]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \exp ( - 188.6 \times 10^{3} /RT)\). Self-accelerating decomposition temperature and critical temperature of thermal explosion of HDNAT are 168.1 and 178.1 °C, respectively. Specific heat capacity of HDNAT was determined with a micro-DSC method and the molar heat capacity is 258.96 J mol−1 K−1 at 298.15 K. Adiabatic time-to-explosion of HDNAT is about 100 s. The impact sensitivity, friction sensitivity, detonation velocity and detonation pressure of HDNAT are >13.1 J, 84 %, 9.0 km s–1 and 36.0 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD. A review of energetic materials synthesis. Thermochim Acta. 2002;384:187–204.

    Article  CAS  Google Scholar 

  2. Gao HX, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  Google Scholar 

  3. Hiskey MA, Chavez DE. Insensitive high-nitrogen compounds. DE: 776133, 2001.

  4. Hiskey MA, Chavez DE, Naud DL. Preparation of 3,3-azo-bis(6-amino-1,2,4,5-tetrazine). US: 6342589, 2002.

  5. Zhang XG, Zhu H, Zhang W. Application progress in high-nitrogen compounds in energetic materials. Chin. J. Energ. Mater. 2004;12:48–53 (in Chinese).

    Google Scholar 

  6. Klapötke TM, Miró Sabaté C. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds. Chem Mater. 2008;20:3629–37.

    Article  Google Scholar 

  7. Ghule VD, Radhakrishnan S, Jadhav PM, Tewari SP. Quantum chemical studies on energetic azo-bridged azoles. J Energ Mater. 2013;31:35–48.

    Article  CAS  Google Scholar 

  8. Chapman RD, Wilson WS, Fronabarger JW, Merwin LH, Ostrom GS. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim Acta. 2002;384:229–43.

    Article  CAS  Google Scholar 

  9. Jorgensen KR. Highly energetic nitrogen species: reliable energetics via the correlation consistent composite approach (ccCA). J Hazard Mater. 2011;186:583–9.

    Article  CAS  Google Scholar 

  10. Ghule VD. Computational screening of nitrogen-rich energetic salts based on substituted triazine. J Phys Chem C. 2013;117:16840–9.

    Article  CAS  Google Scholar 

  11. Dippold AA, Klapötke TM. Nitrogen-rich bis-1,2,4-triazoles: a comparative study of structural and energetic properties. Chemistry. 2012;18:16742–53.

    Article  CAS  Google Scholar 

  12. Fischer D, Klapötke TM, Reymann M, Stierstorfer J. Dense energetic nitraminofurazanes. Chemistry. 2014;20:6401–11.

    Article  CAS  Google Scholar 

  13. Chavez DE, Tappan BC, Mason BA, Parrish D. Synthesis and energetic properties of bis-(triaminoguanidinium)3,3′-dinitro-5,5′-azo-1,2,4-triazolate (TAGDNAT): a new high-nitrogen material. Propellants, Explos, Pyrotech. 2009;34(6):475–9.

    CAS  Google Scholar 

  14. Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C–N compound. J Am Chem Soc. 2005;127:12537–43.

    Article  CAS  Google Scholar 

  15. Liu XJ, Zhang HJ, Lin QH. Progress of study on the synthesis of azole energetic ionic compounds. Chin J Explos & Propell. 2010;33:6–10 (in Chinese).

    Google Scholar 

  16. Naud DL, Hiskey MA, Harry HH. Synthesis and explosive properties of 5,5-dinitro-3,3-azo-1H-1,2,4-triazole (DNAT). J Energ Mater. 2003;21:57–62.

    Article  CAS  Google Scholar 

  17. Cui KJ, Meng ZH, Xu ZB, Xue M, Lin ZH, Wang BZ, Ge ZX, Qin GM. Characterization of hydrazinium 3,5-dinitroamine-1,2,4-triazole. J Energ Mater. 2014;32(Suppl 1):S60–70.

    Article  Google Scholar 

  18. Chavez DE, Gilardi RD. Synthesis of 3,6-bis(3-azido-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine. J Energ Mater. 2009;27:110–7.

    Article  CAS  Google Scholar 

  19. Subbaraman R, Hossein G, Zawodzinski T. Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells. Solid State Ionics. 2009;180:1143–50.

    Article  CAS  Google Scholar 

  20. Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc. 2013;135:9831–8.

    Article  Google Scholar 

  21. Hari KA, Lakshman MK. Synthesis of deuterated 1,2,3-triazoles. J Org Chem. 2012;77:8896–904.

    Article  Google Scholar 

  22. Dontsova D, Pronkin S, Wehle M, Chen ZP, Fettkenhauer C, Clavel G, Antonietti M. Triazoles: a new class of precursors for the synthesis of negatively charged carbon nitride derivatives. Chem Mater. 2015;27:5170–9.

    Article  CAS  Google Scholar 

  23. Ryu T, Baek Y, Lee PH. Synthesis of pyrazines from rhodium-catalyzed reaction of 2H-azirines with N-sulfonyl -1,2,3-triazoles. J Org Chem. 2015;80:2376–82.

    Article  CAS  Google Scholar 

  24. Totobenazara J, Burke AJ. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett. 2015;56:2853–9.

    Article  CAS  Google Scholar 

  25. Li JK, Zhou C, Yang W, Wang YB, Wang BZ. 3,5-Dinitroamino-1,2,4-triazole: synthesis and characterization. Chin J Spectr Lab. 2012;29:2040–2.

    Google Scholar 

  26. Zhong YY, Su Z, Duan BR, Chen FB. Synthesis of polynitrocompounds from nitroguanidine. Propellants, Explos, Pyrotech. 1989;14:150–2.

    Article  Google Scholar 

  27. Zhou C, Wang BZ, Huo H, Zhou Q, Yang W, Ye ZH. A novel energetic material hydrazinium 3,5-dinitroamino-1,2,4-triazole: synthesis and properties. Chin J Energ Mater. 2014;22:576–8. (in Chinese).

    CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  29. Ozawa T. A method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008 (in Chinese).

    Google Scholar 

  31. Zanatta ER, Reinehr TO, Awadallak JA, Kleinubing SJ, Santos JBO, Bariccatti RA, Arroyo PA, Silva EA. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45.

    Article  CAS  Google Scholar 

  32. Huang H, Shi Y, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9.

    Article  CAS  Google Scholar 

  33. Vyzovkin S, Burnham AK, Criado JM, Maqueda LA, Popescu C, Sbirrazzuoli N. ICTKA kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  Google Scholar 

  34. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  35. Smith LC. An approximate solution of the adiabatic explosion problem. Thermochim Acta. 1975;13:1–6.

    Article  CAS  Google Scholar 

  36. Xu KZ, Song JR, Zhao FQ, Ma HX, Gao HX, Chang CR, Ren YH, Hu RZ. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158:333–9.

    Article  CAS  Google Scholar 

  37. Zhang Y, Wu H, Xu KZ, Qiu QQ, An T, Song JR, Zhao FQ. Nonisothermal decomposition kinetics, specific heat capacity, and adiabatic time-to-explosion of Zn(NH3)2(FOX-7)2. J Therm Anal Calorim. 2014;116:817–23.

    Article  CAS  Google Scholar 

  38. Xu KZ, Chen YS, Wang M, Luo JA, Song JR, Zhao FQ, Hu RZ. Synthesis and thermal behavior of 4,5-dihydroxyl-2-(dinitromethylene)-imidazolidine (DDNI). J Therm Anal Calorim. 2011;105:293–300.

    Article  CAS  Google Scholar 

  39. Tian YD, Zhao FQ, Liu JH. Handbook of energetic materials and the related compounds. Beijing: National Defense Industry Press; 2011 (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21241003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang-Zhen Xu or Bo-Zhou Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Zhai, LJ., Xu, KZ. et al. Thermal behaviors of a novel nitrogen-rich energetic compound. J Therm Anal Calorim 126, 1167–1173 (2016). https://doi.org/10.1007/s10973-016-5662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5662-9

Keywords

Navigation