Skip to main content
Log in

Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mass loss and m/z 18 mass spectrometric ion signal temperature profiles are used to characterize interactions between benzoic acid, salicylic acid, and acetylsalicylic acid adsorbates and potassium, sodium, and calcium montmorillonites. Temperature-dependent water desorption trends show that all three adsorbates cause significant disruptions to clay interlayer water molecule environments. Results suggest that the source of this disruption is the formation of adsorbate–water molecule–cation bridging through the adsorbate acid functionality. Salicylic and acetylsalicylic acids perturb interlayer water molecule environments more than benzoic acid. This is most likely due to the additional hydrogen bond-forming capabilities afforded by the hydroxyl (salicylic acid) and ester (acetylsalicylic acid) groups attached to the aromatic rings of these adsorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim S, Aga DS. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B. 2007;10:559–73.

    Article  CAS  Google Scholar 

  2. Baran W, Adamek E, Ziemianska J, Sobczak A. Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater. 2011;196:1–15.

    Article  CAS  Google Scholar 

  3. Celiz MD, Tso J, Aga DS. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem. 2009;28(12):2473–84.

    Article  CAS  Google Scholar 

  4. Cooper ER, Siewicki TC, Phillips K. Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci Total Environ. 2008;398:26–33.

    Article  CAS  Google Scholar 

  5. Xia K, Bhandari A, Das K, Pillar G. Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J Environ Qual. 2005;34:91–104.

    Article  CAS  Google Scholar 

  6. Pan B, Ning P, Xing D. Part V—sorption of pharmaceuticals and personal care products. Environ Sci Pollut Res. 2009;16:106–16.

    Article  CAS  Google Scholar 

  7. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci. 2003;166:145–67.

    Article  CAS  Google Scholar 

  8. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.

    Article  CAS  Google Scholar 

  9. Lutzow MV, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci. 2006;57:426–45.

    Article  Google Scholar 

  10. Sollins P, Homann P, Caldwell BA. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma. 1996;74:65–105.

    Article  Google Scholar 

  11. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. 2002;131(1–2):5–17. doi:10.1016/S0378-4274(02)00041-3.

    Article  CAS  Google Scholar 

  12. Fuster V, Sweeny JM. Aspirin: a historical and contemporary therapeutic overview. Circulation. 2011;123(7):768–78. doi:10.1161/circulationaha.110.963843.

    Article  Google Scholar 

  13. Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin Cosmet Investig Dermatol. 2015;8:455–61. doi:10.2147/CCID.S84765.

    Article  Google Scholar 

  14. Bonina FP, Giannossi ML, Medici L, Puglia C, Summa V, Tateo F. Adsorption of salicylic acid on bentonite and kaolin and release experiments. Appl Clay Sci. 2007;36(1–3):77–85. doi:10.1016/j.clay.2006.07.008.

    Article  CAS  Google Scholar 

  15. Nakai Y, Yamamoto K, Terada K, Oguchi T, Izumikawa S. Interactions between crystalline medicinals and porous clay. Chem Pharm Bull. 1986;34(11):4760–6. doi:10.1248/cpb.34.4760.

    Article  CAS  Google Scholar 

  16. Chefetz B, Eldad S, Polubesova T. Interactions of aromatic acids with montmorillonite: Ca2+- and Fe3+-saturated clays versus Fe3+–Ca2+-clay system. Geoderma. 2011;160(3–4):608–13. doi:10.1016/j.geoderma.2010.11.010.

    Article  CAS  Google Scholar 

  17. Celis R, Real M, Hermosín MC, Cornejo J. Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching tests. Eur J Soil Sci. 2005;56(3):287–97. doi:10.1111/j.1365-2389.2004.00676.x.

    Article  CAS  Google Scholar 

  18. Smectites MJ. In: Gieseking JE, editor. Soil components. New York: Springer; 1975. p. 97–119.

    Google Scholar 

  19. Gates WP, Bordallo HN, Aldridge LP, Seydel T, Jacobsen H, Marry V, et al. Neutron time-of-flight quantification of water desorption isotherms of montmorillonite. J Phys Chem C. 2012;116(9):5558–70. doi:10.1021/jp2072815.

    Article  CAS  Google Scholar 

  20. Emmerich K, Koeniger F, Kaden H, Thissen P. Microscopic structure and properties of discrete water layer in Na-exchanged montmorillonite. J Colloid Interface Sci. 2015;448:24–31. doi:10.1016/j.jcis.2015.01.087.

    Article  CAS  Google Scholar 

  21. Lu L, Frost R, Cai J. Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study. J Therm Anal Calorim. 2010;99(2):377–84. doi:10.1007/s10973-009-0125-1.

    Article  CAS  Google Scholar 

  22. Lu L, Cai J, Frost RL. Near infrared spectroscopy of benzoic acid adsorbed on montmorillonite. Spectrosc Lett. 2010;43(4):266–74. doi:10.1080/00387010903329417.

    Article  CAS  Google Scholar 

  23. Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002.

    Google Scholar 

  24. Yariv S, Russell JD, Farmer VC. Infrared study of the adsorption of benzoic acid and nitrobenzene in montmorillonite. Isr J Chem. 1966;4(5–6):201–13. doi:10.1002/ijch.196600034.

    Article  CAS  Google Scholar 

  25. Yariv S, Borisover M, Lapides I. Few introducing comments on the thermal analysis of organoclays. J Therm Anal Calorim. 2011;105(3):897–906. doi:10.1007/s10973-010-1221-y.

    Article  CAS  Google Scholar 

  26. Nickels TM, Ingram AL, Maraoulaite DK, White RL. Thermogravimetry–mass spectrometry investigations of benzoic acid interactions with sodium and calcium montmorillonite clay. Thermochim Acta. 2015;614:157–62.

    Article  CAS  Google Scholar 

  27. Nickels TM, Ingram AL, Maraoulaite DK, White RL. Variable temperature infrared spectroscopy investigation of benzoic acid interactions with montmorillonite clay interlayer water. Appl Spectrosc. 2015;69(7):850–6.

    Article  CAS  Google Scholar 

  28. Maraoulaite DK, Nickels TM, Ingram AL, White RL. VT-DRIFTS investigations of interactions between benzoic acid and montmorillonite clay. Spectroscopy. 2015;30(10):32–42.

    Google Scholar 

  29. Nickels TM, Ingram AL, Maraoulaite DK, White RL. Variable temperature infrared spectroscopy investigations of benzoic acid desorption from sodium and calcium montmorillonite clays. Appl Spectrosc. 2015;69(12):1381–9.

    Article  CAS  Google Scholar 

  30. Ingram AL, Nickels TM, Maraoulaite DK, White RL. Variable temperature infrared spectroscopy studies of aromatic acid adsorbate effects on montmorillonite dehydration. Appl Spectrosc (in press).

  31. Younssi IE, Rhadfi T, Atlamsani A, Quisefit JP, Herbst F, Draoui K. K-10 montmorillonite: an efficient and reusable catalyst for the aerobic C–C bond cleavage of alpha-substituted ketones. J Mol Catal A Chem. 2012;363–364:437–45.

    Article  Google Scholar 

  32. Stanley DA, Scheiner BJ. Flocculation and dewatering of montmorillonite modified by ion exchange—RI 9021. Avondale: U.S. Department of Interior, Bureau of Mines; 1986.

    Google Scholar 

  33. Stanley DA, Webb SW, Scheiner BJ. Rheology of ion-exchanged montmorillonite clays—RI 8895. Avondale: U.S. Department of Interior, Bureau of Mines; 1984.

    Google Scholar 

  34. White DR, White RL. Isoconversion effective activation energies obtained by variable temperature diffuse reflectance infrared spectroscopy. Appl Spectrosc. 2008;62:116–20.

    Article  CAS  Google Scholar 

  35. Morodome S, Kawamura K. Swelling behavior of Na- and Ca-montmorillonite up to 150 °C by in situ X-ray diffraction experiments. Clays Clay Miner. 2009;57(2):150–60. doi:10.1346/ccmn.2009.0570202.

    Article  CAS  Google Scholar 

  36. Ferrage E, Kirk CA, Cressey G, Cuadros J. Dehydration of Ca-montmorillonite at the crystal scale. Part I: structure evolution. Am Mineral. 2007;92(7):994–1006. doi:10.2138/am.2007.2396.

    Article  CAS  Google Scholar 

  37. Ferrage E, Kirk CA, Cressey G, Cuadros J. Dehydration of Ca-montmorillonite at the crystal scale. Part 2. Mechanisms and kinetics. Am Mineral. 2007;92(7):1007–17. doi:10.2138/am.2007.2397.

    Article  CAS  Google Scholar 

  38. Hendricks SB, Nelson RA, Alexander LT. Hydration mechanism of the clay mineral montmorillonite saturated with various cations. J Am Chem Soc. 1940;62(6):1457–64. doi:10.1021/ja01863a037.

    Article  CAS  Google Scholar 

  39. Michot LJ, Ferrage E, Jiménez-Ruiz M, Boehm M, Delville A. Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study. J Phys Chem C. 2012;116(31):16619–33. doi:10.1021/jp304715m.

    Article  CAS  Google Scholar 

  40. Mackenzie RC, Caillère S. The thermal characteristics of soil minerals and the use of these characteristics in the qualitative and quantitative determination of clay minerals in soils. In: Gieseking JE, editor. Soil components. New York: Springer; 1975.

    Google Scholar 

  41. Sayegh AH, Harward ME, Knox EG. Humidity and temperature interaction with respect to K-saturated expanding clay minerals. Am Mineral. 1965;50(3–4):490–5.

    CAS  Google Scholar 

  42. Liu X-D, Lu X-C. A thermodynamic understanding of clay-swelling inhibition by potassium ions. Angew Chem. 2006;118(38):6448–51. doi:10.1002/ange.200601740.

    Article  Google Scholar 

  43. Zhang L, Lu X, Liu X, Zhou J, Zhou H. Hydration and mobility of interlayer ions of (Nax, Cay)-montmorillonite: a molecular dynamics study. J Phys Chem C. 2014;118(51):29811–21. doi:10.1021/jp508427c.

    Article  CAS  Google Scholar 

  44. Ferrage E, Lanson B, Sakharov BA, Drits VA. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: part I. Montmorillonite hydration properties. Am Mineral. 2005;90:1358–74.

    Article  CAS  Google Scholar 

  45. Morillo E, Perezrodriguez JL, Maqueda C. Mechanisms of interaction between montmorillonite and 3-aminotriazole. Clay Min. 1991;26(2):269–79. doi:10.1180/claymin.1991.026.2.10.

    Article  CAS  Google Scholar 

  46. Akyuz T, Akyuz S. Investigation of adsorption of 5-bromouracil from aqueous solutions to montmorillonite and its interaction with clay framework: a FT-IR spectroscopic study. Asian J Chem. 2011;23(7):3211–3.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. White.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingram, A.L., Nickels, T.M., Maraoulaite, D.K. et al. Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates. J Therm Anal Calorim 126, 1157–1166 (2016). https://doi.org/10.1007/s10973-016-5661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5661-x

Keywords

Navigation