Skip to main content
Log in

Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics of neat polypropylene (PP), PP/poly(lactic acid) (PLA) blend and PP/PLA/maleic anhydride-grafted polypropylene (MAH-g-PP) blend were investigated by means of differential scanning calorimetry. Jeziorny’s and Mo’s models were employed to analyze the non-isothermal crystallization kinetics. The nucleation parameters (K g) and activation energies (ΔE) of non-isothermal crystallization were calculated by the modified Lauritzen–Hoffman equation and Kissinger’s equation, respectively. The results show that Jeziorny’s and Mo’s models are suitable for describing the non-isothermal crystallization kinetics of the samples. PP/PLA (80/20) blend shows the fastest crystallization rate due to the nucleation effect of the dispersed PLA particles in PP matrix. However, the crystallization of PP in the blend is restricted by the incorporation of the MAH-g-PP. The K g and ΔE are in the order: PP/PLA/MAH-g-PP (64/20/16) blend > neat PP > PP/PLA (80/20) blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson K, Schreck K, Hillmyer M. Toughening polylactide. Polym Rev. 2008;48(1):85–108.

    Article  CAS  Google Scholar 

  2. Arcana IM, Bundjali B, Yudistira I, Jariah B, Sukria L. Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability. Polym J. 2007;39(12):1337–44.

    Article  CAS  Google Scholar 

  3. Hamad K, Kaseem M, Ko YG, Deri F. Biodegradable polymer blends and composites: an overview. Polym Sci Ser A. 2014;56(6):812–29.

    Article  CAS  Google Scholar 

  4. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf. 2010;9(5):552–71.

    Article  CAS  Google Scholar 

  5. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L. Poly(l-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci. 2011;121(6):3223–37.

    Article  CAS  Google Scholar 

  6. Kim HS, Kim HJ. Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites. Fiber Polym. 2013;14(5):793–803.

    Article  Google Scholar 

  7. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere. 2008;73(4):429–42.

    Article  CAS  Google Scholar 

  8. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN. Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol Res. 2010;18(6):583–8.

    Article  CAS  Google Scholar 

  9. Nuñez K, Rosales C, Perera R, Villarreal N, Pastor JM. Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci. 2012;52(5):988–1004.

    Article  Google Scholar 

  10. Reddy N, Nama D, Yang Y. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym Degrad Stab. 2008;93(1):233–41.

    Article  CAS  Google Scholar 

  11. Singh G, Kaur N, Bhunia H, Bajpai PK, Mandal UK. Degradation behaviors of linear low-density polyethylene and poly(l-lactic acid) blends. J Appl Polym Sci. 2012;124(3):1993–8.

    Article  CAS  Google Scholar 

  12. Bai H, Wang Y, Song B, Fan X, Zhou Z, Li Y. Nucleating agent induced impact fracture behavior change in PP/POE blend. Polym Bull. 2008;62(3):405–19.

    Article  Google Scholar 

  13. Kang HM, Lu X, Xu YS. Properties of immiscible and ethylene-butyl acrylate-glycidyl methacrylate terpolymer compatibilized poly (lactic acid) and polypropylene blends. Polym Test. 2015;43:173–81.

    Article  CAS  Google Scholar 

  14. Shi Y, Dou Q. Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim. 2013;112(2):901–11.

    Article  CAS  Google Scholar 

  15. Hamad K, Kaseem M, Deri F. Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends. J Polym Res. 2011;18(6):1799–806.

    Article  CAS  Google Scholar 

  16. Balakrishnan H, Hassan A, Wahit MU. Mechanical, thermal and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastomers Plast. 2010;42(3):223–39.

    Article  CAS  Google Scholar 

  17. Li C, Dou Q, Bai Z, Lu Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122(1):407–17.

    Article  CAS  Google Scholar 

  18. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2014;119(1):635–42.

    Article  Google Scholar 

  19. Tábi T, Suplicz A, Czigány T, Kovács JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118(3):1419–30.

    Article  Google Scholar 

  20. Tham WL, Poh BT, MohdIshak ZA, Chow WS. Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. J Therm Anal Calorim. 2014;118(3):1639–47.

    Article  CAS  Google Scholar 

  21. Sarasa J, Gracia JM, Javierre C. Study of the biodisintegration of a bioplastic material waste. Bioresour Technol. 2009;100(15):3764–8.

    Article  CAS  Google Scholar 

  22. Yeh JT, Huang CY, Chai WL, Chen KN. Plasticized properties of poly (lactic acid) and triacetine blends. J Appl Polym Sci. 2009;112(5):2757–63.

    Article  CAS  Google Scholar 

  23. Lee HS, Kim JD. Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier. Polym Compos. 2012;33(7):1154–61.

    Article  CAS  Google Scholar 

  24. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim. 2015;121(3):1321–32.

    Article  CAS  Google Scholar 

  25. Carmen A, José P, Miren I, Jeanette G, Carmen U. Characteristics of non-isothermal crystallization of polypropylene with and without talc. e-Polymers. 2004;4(1):298–313.

    Google Scholar 

  26. Shi N, Dou Q. Crystallization behavior, morphology, and mechanical properties of poly(lactic acid)/tributyl citrate/treated calcium carbonate composites. Polym Compos. 2014;35(8):1570–82.

    Article  CAS  Google Scholar 

  27. Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): effect of dilithium cis-4-cyclohexene-1,2-dicarboxylate as a novel and efficient nucleating agent. Polym Adv Technol. 2015;26(4):376–84.

    Article  CAS  Google Scholar 

  28. Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta. 2014;594:31–8.

    Article  CAS  Google Scholar 

  29. Chen H, Pyda M, Cebe P. Non-isothermal crystallization of PET/PLA blends. Thermochim Acta. 2009;492(1–2):61–6.

    Article  CAS  Google Scholar 

  30. Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Article  Google Scholar 

  31. Nandi S, Ghosh AK. Crystallization kinetics of impact modified polypropylene. J Polym Res. 2007;14(5):387–96.

    Article  CAS  Google Scholar 

  32. Seo Y, Kim J, Kim KU, Kim YC. Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer. 2000;41(7):2639–46.

    Article  CAS  Google Scholar 

  33. Menyhárd A, Varga J. The effect of compatibilizers on the crystallisation, melting and polymorphic composition of β-nucleated isotactic polypropylene and polyamide 6 blends. Eur Polym J. 2006;42(12):3257–68.

    Article  Google Scholar 

  34. Liu H, Xie T, Zhang Y, Ou Y, Yang G. Crystallization behaviors of polypropylene/polyamide-6 blends modified by a maleated thermoplastic elastomer. Polym J. 2006;38(1):21–30.

    Article  CAS  Google Scholar 

  35. Yang Z, Zhang Z, Tao Y, Mai K. Effects of polyamide 6 on the crystallization and melting behavior of β-nucleated polypropylene. Eur Polym J. 2008;44(11):3754–63.

    Article  CAS  Google Scholar 

  36. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  37. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  38. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  39. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  40. Zeng A, Zheng Y, Qiu S, Guo Y. Isothermal crystallization and melting behavior of polypropylene with lanthanum complex of cyclodextrin derivative as a β-nucleating agent. J Appl Polym Sci. 2011;121(6):3651–61.

    Article  CAS  Google Scholar 

  41. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  42. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.

    Article  CAS  Google Scholar 

  43. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427(1–2):117–28.

    Article  CAS  Google Scholar 

  44. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.

    Article  CAS  Google Scholar 

  45. Supaphol P, Spruiell JE. Thermal properties and isothermal crystallization of syndiotactic polypropylenes: differential scanning calorimetry and overall crystallization kinetics. J Appl Polym Sci. 2000;75(1):44–59.

    Article  CAS  Google Scholar 

  46. Xu J, Srinivas S, Marand H, Agarwal P. Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene. Macromolecules. 1998;31(23):8230–42.

    Article  CAS  Google Scholar 

  47. Lim GBA, Mcguire KS, Lloyd DR. Nonisothermal crystallization of isotactic polypropylene in dotriacontane. 2. Effects of dilution, cooling rate, and nucleating agent addition on growth rate. Polym Eng Sci. 1993;33(9):537–42.

    Article  CAS  Google Scholar 

  48. Huang JW. Dispersion, crystallization kinetics, and parameters of Hoffman- Lauritzen theory of polypropylene and nanoscale calcium carbonate composite. Polym Eng Sci. 2009;49(9):1855–64.

    Article  CAS  Google Scholar 

  49. Zhao S, Xin Z. Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. J Appl Polym Sci. 2009;112(3):1471–80.

    Article  CAS  Google Scholar 

  50. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  51. Fan Q, Duan F, Guo H, Wu T. Non-isothermal crystallization kinetics of polypropylene and hyperbranched polyester blends. Chin J Chem Eng. 2015;23(2):441–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Foundation for Graduate Students of Jiangsu Province (KYLX15_0779) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Zf., Dou, Q. Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends. J Therm Anal Calorim 126, 785–794 (2016). https://doi.org/10.1007/s10973-016-5554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5554-z

Keywords

Navigation