Skip to main content
Log in

Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of aluminum nitride (AlN) loading and size on the thermal conductivity of bisphenol A-aniline-based polybenzoxazine resin were studied. The experimental data of the thermal conductivity, CTE, and dielectric constants of these hybrids were compared with those predicted using various models. The morphological analysis revealed the formation of AlN conductive chains in the polybenzoxazine matrix. The thermal conductivity values of these hybrids gradually increased as the AlN fillers content increased and their sizes decreased. The highest thermal conductivity value reached 7.89 W m−1 K−1 at 60 vol% of 50 nm AlN. At the maximum AlN loading, the CTE values of these hybrids were reduced by 75 %, while their dielectric constants are raised by almost 45 %. The TG results showed significant improvements in the thermal degradation properties of these composites by adding the AlN filler; moreover, the Agari semiempirical model well-fitted the thermal conductivity experimental data of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim W, Bae JW, Choi ID, Kim YS. Thermally conductive EMC for microelectronic encapsulation. Polym Eng Sci. 1999;39(4):756–66.

    Article  CAS  Google Scholar 

  2. Wong CP, Bollampally RS. Thermally conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396–403.

    Article  CAS  Google Scholar 

  3. Lu X, Xu G. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci. 1997;65(13):2733–8.

    Article  CAS  Google Scholar 

  4. Tanaka T, Kuzako M, Okamoto K. Toward high thermal conductivity nano micro epoxy composites with sufficient endurance voltage. J Int Counc Elect Eng. 2012;2(1):90–8.

    Article  Google Scholar 

  5. Kumlutas D, Tavman IH. A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplastic Compos Mater. 2006;19(4):441–55.

    Article  CAS  Google Scholar 

  6. Xu Y, Chung DDL, Mroz C. Thermally conducting aluminium nitride polymer-matrix composites. Compos Part A. 2001;32(12):1749–57.

    Article  Google Scholar 

  7. Li L, Chung DDL. Thermally conducting polymer–matrix composites containing both AlN particles and SiC whiskers. J Electron Mater. 1994;23(6):557–64.

    Article  CAS  Google Scholar 

  8. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater. 2015;27(6):2100–6.

    Article  CAS  Google Scholar 

  9. Gonsalves KE, Chen X, Baraton MI. Mechanistic investigation of the preparation of polymer/ceramic nanocomposites. Nanostru Mater. 1997;9(1–8):181–4.

    Article  CAS  Google Scholar 

  10. Zhang SM, Deng H, Zhang Q, Fu Q. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interfaces. 2014;6(9):6835–44.

    Article  CAS  Google Scholar 

  11. Agari Y, Uno T. Estimation on thermal conductivities of filled polymers. J Appl Polym Sci. 1986;32(7):5705–12.

    Article  CAS  Google Scholar 

  12. Progelhof RC, Throne JL, Ruetsch RR. Methods of predicting the thermal conductivity of composite systems. Polym Eng Sci. 1976;16(9):615–25.

    Article  CAS  Google Scholar 

  13. Cheng SC, Vachon RI. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transfer. 1969;12(3):249–64.

    Article  CAS  Google Scholar 

  14. Yung KC, Zhu BL, Yue TM, Xie CS. Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems. J Appl Polym Sci. 2010;116(1):518–27.

    Article  CAS  Google Scholar 

  15. Nagai Y, Lai GC. Thermal conductivity of epoxy resin filled with particulate aluminium nitride powder. J Ceram Soc Jpn. 1997;105(3):197–200.

    Article  CAS  Google Scholar 

  16. He X, Fu R, Han Y, Shen Y, Wang D. High thermal conductive Si3N4 particle filled epoxy composites with a novel structure. J Electron Packag. 2007;129(4):469–72.

    Article  CAS  Google Scholar 

  17. Yu S, Hing P, Hu X. Thermal conductivity of polystyrene–aluminium nitride composites. Compos Part A Appl Sci Manuf. 2002;33(2):289–92.

    Article  Google Scholar 

  18. He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol. 2007;67(11–12):2493–9.

    Article  CAS  Google Scholar 

  19. Wang J, Yi XS. Preparation and the properties of PMR-type polyimide composites with aluminium nitride. J Appl Polym Sci. 2003;89(14):3913–7.

    Article  CAS  Google Scholar 

  20. Chen X, Gonsalves KE, Chow GM, Xiao TD. Homogeneous dispersion of nano-structured aluminium nitride in a polyimide matrix. Adv Mater. 1994;6(6):481–4.

    Article  CAS  Google Scholar 

  21. Xie SH, Zhu BK, Li JB, Wei XZ, Xu ZK. Preparation and properties of polyimide/aluminium nitride. Polym Test. 2004;23(7):797–801.

    Article  CAS  Google Scholar 

  22. Zhang WB, Xu XL, Yang JH, Huang T, Zhang N, Wang Y, Zhou ZW. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos Sci Technol. 2015;106:1–8.

    Article  CAS  Google Scholar 

  23. Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta. 1998;320(1–2):177–86.

    Article  CAS  Google Scholar 

  24. Goyal R, Tiwari A, Mulik U, Negi Y. Novel high performance Al2O3/poly(ether ether ketone) nanocomposites for electronics applications. Compos Sci Technol. 2007;67(9):1802–12.

    Article  CAS  Google Scholar 

  25. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta. 2005;430(1–2):155–65.

    Article  CAS  Google Scholar 

  26. Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos Part A Appl Sci Manuf. 2009;40(6–7):830–6.

    Article  Google Scholar 

  27. Maiti SN, Ghosh K. Thermal characteristics of silver powder—filled polypropylene composites. J Appl Polym Sci. 1994;52(8):1091–103.

    Article  CAS  Google Scholar 

  28. Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A Appl Sci Manuf. 2013;53:137–44.

    Article  CAS  Google Scholar 

  29. Zhou Y, Wang Y, Wang L, Yu K, Lin ZD, He L. Fabrication and characterization of aluminium nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic application. Mater Sci Eng B. 2012;177(11):892–6.

    Article  CAS  Google Scholar 

  30. Zhou W, Yu D, Min C, Fu Y, Guo X. Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci. 2009;112(3):1695–703.

    Article  CAS  Google Scholar 

  31. Yen CL, Tseng HC, Wang YZ, Hsieh KH. Thermal conductivity of glass fiber reinforced polypropylene under high pressure. J Appl Polym Sci. 1991;42(5):1179–84.

    Article  CAS  Google Scholar 

  32. Bajaj P, Jha NK, Kumar A. Effect of coupling agents on thermal and electrical properties of mica/epoxy composites. J Appl Polym Sci. 1995;56(10):1339–47.

    Article  CAS  Google Scholar 

  33. Ishida H, Agag T. Handbook of benzoxazine resin. Oxford: Elsevier Press; 2012.

    Google Scholar 

  34. Kiskan B, Ghosh NN, Yagci Y. Polybenzoxazine-based composites as high performance materials. Polym Int. 2011;60(2):167–77.

    Article  CAS  Google Scholar 

  35. Rimdusit S, Jubsilp C, Tiptipakorn S. Alloys and composites of polybenzoxazines. Singapore: Springer; 2013.

    Book  Google Scholar 

  36. Ramdani N, Liu WB, Wang J, Derradji M. Ceramic based polybenzoxazine micro- and nanocomposites. In: Ishida H, Froimowicz P, editors. Advanced and emerging polybenzoxazine science and technology. 1st ed. Amsterdam: Elsevier; 2017.

    Google Scholar 

  37. Ramdani N, Derradji M, Wang J, Feng TT, Tong Z, Mokhnache EO, Liu WB. Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites. Mater Lett. 2015;155:34–7.

    Article  CAS  Google Scholar 

  38. Ohashi M, Kawakami S, Yokogawa Y, Lai GC. Spherical aluminium nitride fillers for heat-conducting plastic packages. J Am Ceram Soc. 2005;88(9):2615–8.

    Article  CAS  Google Scholar 

  39. Agrawal A, Satapathy A. Epoxy composites filled with micro-sized AlN particles for microelectronic applications. Part Sci Technol Int J. 2015;33:2–7.

    Article  CAS  Google Scholar 

  40. Kananu SK. Dielectric properties of matrix composite materials with high volume concentrations of inclusions (effective field approach). Int J Eng Sci. 2003;41(12):1287–312.

    Article  Google Scholar 

  41. Ling W, Gu A, Liang G, Yuan L. New composites with thermal conductivity and low dielectric constant for microelectronic packaging. Polym Compos. 2010;31(2):307–13.

    CAS  Google Scholar 

  42. Vo HT, Todd M, Shi FG, Shapiro AA, Edwards M. Towards model based engineering of underfill materials: CTE modeling. Microelect J. 2001;32(4):331–8.

    Article  CAS  Google Scholar 

  43. Ning X, Ishida H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A Polym Chem. 1994;32(6):1121–9.

    Article  CAS  Google Scholar 

  44. Lee ES, Lee SM. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminium nitride in epoxy resin. J Am Ceram Soc. 2008;91(4):1169–74.

    Article  CAS  Google Scholar 

  45. Zhou WY, Qi SH, Li HD, Shao SY. Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta. 2007;452(1):36–42.

    Article  CAS  Google Scholar 

  46. Yu S, Peter H, Xio H. Thermal expansion behavior of PS-AlN composites. J Phys D Appl Phys. 2000;33(13):1606–10.

    Article  CAS  Google Scholar 

  47. Xu Y, Chung DDL, Mroz C. Thermally conducting AlN polymer matrix composites. Compos Part A. 2001;32(12):1749–57.

    Article  Google Scholar 

  48. Wong CP, Raja SB. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396–403.

    Article  CAS  Google Scholar 

  49. Yu D, Wu J, Zhou L, Xie D, Wu S. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Compos Sci Technol. 2000;60(4):499–508.

    Article  CAS  Google Scholar 

  50. Wu SL, Tung IC. Dielectric studies of mineral-filled epoxy. Polym Compos. 1995;16(3):233–9.

    Article  CAS  Google Scholar 

  51. Su YC, Chang FC. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer. 2003;44(26):7989–96.

    Article  CAS  Google Scholar 

  52. Velez-Herrera P, Ishida H. Synthesis and characterization of highly fluorinated diamines and benzoxazines derived therefrom. J Fluorine Chem. 2009;130(6):573–80.

    Article  CAS  Google Scholar 

  53. Su YC, Chen WC, Ou KL, Chang FC. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers. Polymer. 2005;46(11):3758–66.

    Article  CAS  Google Scholar 

  54. Ramdani N, Derradji M, Wang J, Liu W, Mokhnache EO. Effects of aluminium nitride silane-treatment on the mechanical and thermal properties of polybenzoxazine matrix. Plast Rubber Compos. 2016;45(2):72–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciated the financial supports from National Natural Science Foundation of China (Project No. 50973022), Specialized Research Funds for the Doctoral Program of Higher Education (Project No. 20122304110019), Natural Science Foundation of Heilongjiang Province (Project No. E200921), Fundamental Research Funds for the Central Universities (Project No. HEUCFT1009), Innovation Talents Foundation of Harbin (Project No. 2008RFXXG006), and the open fund of Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, Harbin Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdani, N., Derradji, M., Wang, J. et al. Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids. J Therm Anal Calorim 126, 561–570 (2016). https://doi.org/10.1007/s10973-016-5492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5492-9

Keywords

Navigation