Skip to main content
Log in

Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal degradation kinetics of polymer nanocomposites composed of high-density polyethylene (HDPE) as polymer matrix and aluminum nitride (AlN) as nanofiller has been studied at variable concentration of (nano) AlN. Field emission scanning electron microscopy was used to examine the microstructure of the HDPE polymer and the dispersion of AlN (nano) particles in it. The non-isothermal degradation kinetics of AlN (nano)/HDPE composites has been investigated by thermogravimetric analysis (TG) at multiple heating rates between 5 and 20 °C min−1. This study confirmed that the thermal stability of the filled nanocomposites is improved as compared to pristine HDPE. Thermal transport barrier effect is also enhanced with the increase in concentration of AlN (nano) loading. Dependence of activation energy \( (E_{\text{a}} ) \) on reaction extent (α) of the degradation process is estimated in light of ‘model-free’ methods (viz. Flynn–Wall–Ozawa and Starink) and advanced isoconversional approach. Ozawa’s generalized time ‘θ’ combination of the differential master plots ‘\( f(\alpha ) = ({\text{d}}\alpha /{\text{d}}\theta ) \)’ and combined [integral (θ) and differential \( ({\text{d}}\alpha /{\text{d}}\theta ) \)] master plots ‘\( Z(\alpha ) = ({\text{d}}\alpha /{\text{d}}\theta )\theta \)’ have been employed to investigate the appropriate thermal degradation mechanism(s) for AlN (nano)/HDPE composites. The results on ‘FZ master plots’ show that thermal decomposition of pristine HDPE follows two-dimensional diffusion mechanism, while AlN (nano)/HDPE composites undergo more complex degradation schematics, being dependent on the applied heating rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  2. Thostenson ET, Li C, Chou TW. Nanocomposites in context. Compos Sci Technol. 2005;65:491–516.

    Article  CAS  Google Scholar 

  3. Olewnik E, Garman K, Czerwinski W. Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. J Therm Anal Calorim. 2010;101:323–9.

    Article  CAS  Google Scholar 

  4. Richard AV, John FM. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle—filled polymers. Chem Mater. 2007;19:2736–51.

    Article  Google Scholar 

  5. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  6. Gonzalez-Benito J, Olmos D. Efficient dispersion of nanoparticles in the thermoplastic polymers. Plast Res online Soc Plast Eng. 2010;. doi:10.1002/spepro.002566.

    Google Scholar 

  7. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1–24.

    Article  CAS  Google Scholar 

  8. Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta. 2011;523:25–45.

    Article  CAS  Google Scholar 

  9. Mofokeng JP, Luyt AS. Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(e-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci. 2015;50:3812–24.

    Article  CAS  Google Scholar 

  10. Omrani A, Rostami AA, Ravar F. Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111:677–83.

    Article  CAS  Google Scholar 

  11. Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.

    Article  CAS  Google Scholar 

  12. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  13. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76.

    Article  CAS  Google Scholar 

  14. Al-Salem SM, Lettieri P. Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem Eng Res Des. 2010;88:1599–606.

    Article  CAS  Google Scholar 

  15. Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nano-composite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251–60.

    Article  CAS  Google Scholar 

  16. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.

    Article  Google Scholar 

  17. Rajeshwari P, Dey TK. Structural and thermal properties of HDPE/n-AlN polymer nano-composites. J Therm Anal Calorim. 2014;118:1513–30.

    Article  CAS  Google Scholar 

  18. Rajeshwari P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim. 2016;123:1523–44.

    Article  CAS  Google Scholar 

  19. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  20. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  22. Friedman HL. Kinetic and gaseous products of thermal decomposition of polymers. J Macromol Sci A. 1967;1:57–79.

    Article  CAS  Google Scholar 

  23. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversional methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  25. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of non-isothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;2:178–83.

    Article  Google Scholar 

  27. Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  28. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  29. Malek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  30. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  31. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and non-isothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  32. Turmanova SCh, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.

    Article  CAS  Google Scholar 

  33. Montero B, Ramirez C, Rico M, Barral L, Diez J, Lopez J. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system. Polym Int. 2010;59:112–8.

    Article  CAS  Google Scholar 

  34. Chen Y, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab. 2007;92:280–91.

    Article  CAS  Google Scholar 

  35. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;114:1606–18.

    Article  CAS  Google Scholar 

  36. Koga N. Kinetic analysis of thermo-analytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59.

    Article  CAS  Google Scholar 

  37. Koga N, Criado JM. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81:2901–9.

    Article  CAS  Google Scholar 

  38. Malek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid state processes. J Mater Res. 2001;16:1862–71.

    Article  CAS  Google Scholar 

  39. Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72:901–6.

    Article  CAS  Google Scholar 

  40. Malek J, Koga N, Perez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;113:1437–46.

    Article  CAS  Google Scholar 

  41. Sheppard LM. Aluminum nitride: a versatile but challenging material. Am Ceram Soc Bull. 1990;69:1801–12.

    Google Scholar 

  42. Mroz TJ Jr. Annual materials review: aluminum nitride. Am Ceram Soc Bull. 1992;71:782–6.

    CAS  Google Scholar 

  43. Galli P, Vecellio G. Polyolefins: the most promising large-volume materials for the 21st century. J Polym Sci A Polym Chem. 2004;42:396–415.

    Article  CAS  Google Scholar 

  44. Vyazovkin S, Burnham AK, Criado JM, Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  45. Doyle CD. Series approximations to the equation of thermo-gravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  46. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  47. Zabihi O, Khodabandeh A. Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim. 2013;112:1507–13.

    Article  CAS  Google Scholar 

  48. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius functions. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  49. Annakutty KS, Kishore K. Novel polymeric flame retardant plasticizers for poly-vinyl chloride. Eur Polym J. 1993;29:1387–90.

    Article  CAS  Google Scholar 

  50. Zabihi O, Khodabandeh A, Mostafavi SM. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stab. 2012;97:3–13.

    Article  CAS  Google Scholar 

  51. Peng Z, Li SD, Huang MF, Xu K, Wang C, Li PW, Chen XG. Thermogravimetric analysis of methyl methacrylate-graft-natural rubber. J Appl Polym Sci. 2002;85:2952–5.

    Article  CAS  Google Scholar 

  52. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.

    Article  CAS  Google Scholar 

  53. Chrissafis K. Kinetics of thermal degradation of polymers complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  54. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  55. Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100:109–18.

    Article  CAS  Google Scholar 

  56. Simha R, Wall LA. Kinetics of chain depolymerisation. J Phys Chem. 1952;56:707–15.

    Article  CAS  Google Scholar 

  57. Wall LA, Madorsky SL, Brown DW, Straus S, Simha R. The depolymerization of polymethylene and polyethylene. J Am Chem Soc. 1954;76:3430–7.

    Article  CAS  Google Scholar 

  58. Tsuchiya Y, Sumi K. Thermal decomposition products of polyethylene. J Polym Sci A Polym Chem. 1968;6:415–24.

    Article  CAS  Google Scholar 

  59. Tsuchiya Y, Sumi K. Thermal decomposition products of polypropylene. J Polym Sci A Polym Chem. 1969;7:1599–607.

    Article  CAS  Google Scholar 

  60. Tsuchiya Y, Sumi K. Thermal decomposition products of polyisobutylene. J Polym Sci A Polym Chem. 1969;7:813–26.

    Article  CAS  Google Scholar 

  61. Kiran E, Gillham JK. Pyrolysis-molecular weight chromatography: a new on-line system for analysis of polymers. II. Thermal decomposition of polyolefins: polyethylene, polypropylene, polyisobutylene. J Appl Polym Sci. 1976;20:2045–68.

    Article  CAS  Google Scholar 

  62. Lattimer RP. Pyrolysis field ionization mass spectrometry of polyolefins. J Anal Appl Pyrolysis. 1995;31:203–25.

    Article  CAS  Google Scholar 

  63. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  64. Murata K, Hirano Y, Sakata Y, Uddin MA. Basic study on a continuous flow reactor for thermal degradation of polymers. J Anal Appl Pyrolysis. 2002;65:71–90.

    Article  CAS  Google Scholar 

  65. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2009;94:2079–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (TKD) is grateful to the Department of Science & Technology, Government of India (New Delhi), for financial assistance in the form of a research project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajeshwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshwari, P., Dey, T.K. Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim 125, 369–386 (2016). https://doi.org/10.1007/s10973-016-5406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5406-x

Keywords

Navigation