Skip to main content
Log in

Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene succinate) (PBS)/basalt fiber (BF) composites were prepared by melt blending method using twin-screw extruder followed by injection molding. Mechanical properties, crystallization and melting behavior, morphology, crystal structure and thermal stability of PBS/BF composites with various BF contents were investigated by different techniques. The tensile and impact properties of the composites were improved markedly with the addition of BF, due to the efficient interfacial adhesion between fibers and PBS matrix. Crystallization and melting behavior of PBS in its composites kept almost unchanged, indicating that the nucleation effect of BF was minimal and, meanwhile, it played a role in hindrance of chain motion. TG analysis showed that the thermal stability of PBS/BF composites was enhanced by the addition of BF. The crystal structure of PBS was not affected by the incorporation of BF, while the nucleation density increased gradually and the spherulite size reduced remarkably with the increase in BF. No transcrystallization phenomenon on the surface of BF was observed maybe as a result of without surface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q. Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Adv. 2013;3:26418–26.

    Article  CAS  Google Scholar 

  2. Zhou M, Li Y, He C, Jin T, Wang K, Fu Q. Interfacial crystallization enhanced interfacial interaction of poly(butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol. 2014;91:22–9.

    Article  CAS  Google Scholar 

  3. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B. 2011;42:856–73.

    Article  Google Scholar 

  4. Liang Z, Pan P, Zhu B, Dong T, Inoue Y. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci. 2010;115:3559–67.

    Article  CAS  Google Scholar 

  5. Dorez G, Taguet A, Ferry L, Lopez-Cuesta JM. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab. 2013;98:87–95.

    Article  CAS  Google Scholar 

  6. Feng YH, Li YJ, Xu BP, Zhang DW, Qu JP, He HZ. Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Compos Part B. 2013;44:193–9.

    Article  CAS  Google Scholar 

  7. Wu CS, Liao HT, Jhang JJ. Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterization and assessment of mechanical and thermal properties. Polym Bull. 2013;70:3443–62.

    Article  CAS  Google Scholar 

  8. Feng Y, Shen H, Qu J, Liu B, He H, Han L. Preparation and properties of PBS/sisal-fiber composites. Polym Eng Sci. 2011;51:474–81.

    Article  CAS  Google Scholar 

  9. Lee MW, Han SO, Seo YB. Red algae fibre/poly(butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Technol. 2008;68:1266–72.

    Article  CAS  Google Scholar 

  10. Nam TH, Ogihara S, Nakatani H, Kobayashi S, Song JI. Mechanical and thermal properties and water absorption of jute fiber reinforced poly(butylene succinate) biodegradable composites. Adv Compos Mater. 2012;21:241–58.

    Article  CAS  Google Scholar 

  11. Liu L, Yu J, Cheng L, Yang X. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab. 2009;94:90–4.

    Article  CAS  Google Scholar 

  12. Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers. 2013;5:128–41.

    Article  Google Scholar 

  13. Tan B, Qu J, Liu L, Feng Y, Hu S, Yin X. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta. 2011;525:141–9.

    Article  Google Scholar 

  14. Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37:1552–96.

    Article  CAS  Google Scholar 

  15. Faruk O, Bledzki AK, Fink HP, Sain M. Progress report on natural fiber reinforced composites. Macromol Mater Eng. 2014;299:9–26.

    Article  CAS  Google Scholar 

  16. Artemeko SE. Polymer composite materials made from carbon, basalt, and glass fibres. Structure and properties. Fibre Chem. 2003;35:226–8.

    Article  Google Scholar 

  17. Kadykova YuA, Artemeko SE, Valileva OV, Leontev AN. Physicochemical reaction in polymer composite materials made from carbon, glass, and basalt fibres. Fibre Chem. 2003;35:455–7.

    Article  CAS  Google Scholar 

  18. Deák T, Czigány T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J. 2009;79:645–51.

    Article  Google Scholar 

  19. Deák T, Czigány T, Tamás P, Németh C. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polym Lett. 2010;4:590–8.

    Article  Google Scholar 

  20. Deák T, Czigány T, Marsálková M, Militky J. Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polym Eng Sci. 2010;50:2448–56.

    Article  Google Scholar 

  21. Yu A, Kadykova A. Structural polymeric composite material reinforced with basalt fiber. Russ J Appl Chem. 2012;85:1434–8.

    Article  Google Scholar 

  22. Varley RJ, Tian W, Leong KH, Leong AY, Fredo F, Quaresimin M. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites. Polym Compos. 2013;34:320–9.

    Article  CAS  Google Scholar 

  23. Espan JM, Samper MD, Fages E, Sanchez-Nacher L, Balart R. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polym Compos. 2013;34:376–81.

    Article  Google Scholar 

  24. Torres JP, Hoto R, Andrés J, García-Manrique JA. Manufacture of green-composite sandwich structures with basalt fiber and bioepoxy resin. Adv Mater Sci Eng. 2013;Article ID 214506.

  25. Manikandan V, Jappes JTW, Kumar SMS, Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos Part B. 2012;43:812–8.

    Article  CAS  Google Scholar 

  26. Botev M, Betchev H, Bikiaris D, Panayiotou C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl Polym Sci. 1999;74:523–31.

    Article  CAS  Google Scholar 

  27. Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66:3210–20.

    Article  Google Scholar 

  28. Czigány T, Deák EÁKT, Tamás P. Discontinuous basalt and glass fiber reinforced PP composites from textile prefabricates: effects of interfacial modification on the mechanical performance. Compos Interfaces. 2008;15:697–707.

    Article  Google Scholar 

  29. Cao S, Liu H, Ge S, Wu G. Mechanical and tribological behaviors of UHMWPE composites filled with basalt fibers. J Reinf Plast Compos. 2011;30:347–55.

    Article  CAS  Google Scholar 

  30. Mokhtar I, Yahya MY, Kadir MRA. Mechanical characterization of basalt/HDPE composite under in vitro condition. Polym-Plast Technol Eng. 2013;52:1007–15.

    Article  CAS  Google Scholar 

  31. Wu Q, Chi K, Wu Y, Lee S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater Des. 2014;60:334–42.

    Article  CAS  Google Scholar 

  32. Ying S, Zhou X. Basalt fibres/polystyrene interfacial adhesion through modification of basalt fibres by block copolymers. Iran Polym J. 2011;20:571–8.

    CAS  Google Scholar 

  33. Ronkay F, Czigány T. Development of composites with recycled PET matrix. Polym Adv Technol. 2006;17:830–4.

    Article  CAS  Google Scholar 

  34. Kráčalík M, Pospíšil L, Šlouf M, Mikešová J, Sikora A, Šimoník J, Fortelný I. Recycled poly(ethylene terephthalate) reinforced with basalt fibres: rheology, structure, and utility properties. Polym Compos. 2008;29:437–42.

    Article  Google Scholar 

  35. Chen X, Li Y, Gu N. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed Mater. 2010;5:044104–8.

    Article  Google Scholar 

  36. Liu T, Yu F, Yu X, Zhao X, Lu A, Wang J. Basalt fiber reinforced and elastomer toughened polylactide composites: mechanical properties, rheology, crystallization, and morphology. J Appl Polym Sci. 2012;125:1292–301.

    Article  CAS  Google Scholar 

  37. Liu T, Yu X, Yu F, Zhao X, Lu A, Wang J, Wang X, Liu T. Isothermal crystallization kinetics of fiber/polylactic acid composites and morphology. Polym-Plast Technol Eng. 2012;51:597–604.

    Article  CAS  Google Scholar 

  38. Kurniawan D, Kim BS, Lee HY, Lim JY. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos Part B. 2012;43:1010–4.

    Article  CAS  Google Scholar 

  39. Kurniawan D, Kim BS, Lee HY, Lim JY. Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites. Polym-Plast Technol Eng. 2013;52:97–100.

    Article  CAS  Google Scholar 

  40. Tábi T, Tamás P, Kovács JG. Chopped basalt fibres: a new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources. Express Polym Lett. 2013;7:107–19.

    Article  Google Scholar 

  41. Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B. 2005;36:504–12.

    Article  Google Scholar 

  42. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of basalt fiber composite mechanical properties for applications in transportation. Polym Compos. 2006;27:41–8.

    Article  Google Scholar 

  43. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of basalt fiber composite aging behavior for applications in transportation. Polym Compos. 2006;27:475–83.

    Article  CAS  Google Scholar 

  44. Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J, Zhang R, Wang H. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater Chem Phys. 2012;133:845–9.

    Article  CAS  Google Scholar 

  45. Liang J, Xu Y, Wei Z, Song P, Chen G, Zhang W. Mechanical properties, crystallization and melting behaviors of carbon fiber reinforced PA6 composites. J Therm Anal Calorim. 2014;115:209–18.

    Article  CAS  Google Scholar 

  46. Miyata T, Masuko T. Crystallization behaviour of poly(tetramethylene succinate). Polymer. 1998;39:1399–404.

    Article  CAS  Google Scholar 

  47. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081–92.

    Article  CAS  Google Scholar 

  48. Han H, Wang X, Wu D. Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber. J Chem Technol Biotechnol. 2013;88:1200–11.

    Article  CAS  Google Scholar 

  49. Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W. Morphology, mechanical and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos. 2014;. doi:10.1002/pc.23038.

    Google Scholar 

  50. Wang X, Yang H, Song L, Hu Y, Xing W, Lu H. Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol. 2011;72:1–6.

    Article  CAS  Google Scholar 

  51. Cao YW, Feng JC, Wu PY. Preparation of organically dispersible grapheme nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon. 2010;48:3834–9.

    Article  Google Scholar 

  52. Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC. Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ. 2007;15:151–8.

    Article  Google Scholar 

  53. Shih YF. Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci, Part B Polym Phys. 2009;47:1231–9.

    Article  CAS  Google Scholar 

  54. Wei Z, Chen G, Shi Y, Song P, Zhan M, Zhang W. Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. J Polym Res. 2012;19: Article No. 9930.

  55. Wang Y, Tong B, Hou S, Li M, Shen C. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A. 2011;42:66–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wei or Jicai Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sang, L., Wei, Z. et al. Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber. J Therm Anal Calorim 122, 261–270 (2015). https://doi.org/10.1007/s10973-015-4732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4732-8

Keywords

Navigation