Skip to main content
Log in

Viscoelastic behavior of PMMA in relation to deformation mode

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molecular motions and the behavior in the four characteristic regions of an amorphous poly(methyl methacrylate) (PMMA) were studied using two different attachments of a dynamic mechanical analyzer: tension and bending. Measurements were taken over a wide range of temperatures and frequencies using ramp and step heating programs. A distinct viscoelastic versus temperature behavior was found above and below the glass transition temperature in bending mode. Apparent activation energies for the two relaxations found in PMMA (α and β) using both clamping modes are reported and discussed. Beyond the usual behavior of α- and β-relaxations with increasing frequency, new features are observed: the merging of α- and β-relaxation. Experimental results are explained on the basis of cooperativity concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E. PMMA: a key macromolecular component for dielectric low-k hybrid inorganic-organic polymer films. Eur Polym J. 2007;43:673–6.

    Article  CAS  Google Scholar 

  2. Charmondusit K, Seeluangsawat L. Recycling of poly(methyl methacrylate) scrap in the styrene–methyl methacrylate copolymer cast sheet process. Resour Conserv Recycl. 2009;54:97–103.

    Article  Google Scholar 

  3. Ceccorulli G, Pizzoli M. Effect of water on the relaxation spectrum of poly(methyl methacrylate). Polym Bull. 2001;47:283–9.

    Article  CAS  Google Scholar 

  4. Pratap A, Kananbala S. Application of some thermo-analytical techniques to glasses and polymers. J Therm Anal Calorim. 2012;107:171–82.

    Article  CAS  Google Scholar 

  5. Li C, Wu J, Zhao J, Zhao D, Fan Q. Effect of inorganic phase on polymeric relaxation dynamics in PMMA/silica hybrids studied by dielectric analysis. Eur Polym J. 2004;40:1807–14.

    Article  CAS  Google Scholar 

  6. Mijovic J, Sy JW, Kwei TK. Reorientational dynamics of dipoles in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends by dielectric spectroscopy. Macromolecules. 1997;30:3042–50.

    Article  CAS  Google Scholar 

  7. Dionísio M, Fernandes AC, Mano JF, Correia NT, Sousa RC. Relaxation studies in PEO/PMMA blends. Macromolecules. 2000;33:1002–11.

    Article  Google Scholar 

  8. De Deus JF, Souza GP, Corradini WA, Atvars TDZ, Akcelrud L. Relaxations of poly(methyl methacrylate) probed by covalently attached anthryl groups. Macromolecules. 2004;37:6938–44.

    Article  Google Scholar 

  9. Kalogeras IM, Neagu ER, Vassilikou-Dova A. Free-space and intermolecular interaction effects on the local-chain rotational relaxation dynamics in dye-polymer lasing materials. Macromolecules. 2004;37:1042–53.

    Article  CAS  Google Scholar 

  10. Schimdt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW. Molecular nature of the β relaxation in poly(methyl methacrylate) investigated by multidimensional NMR. Macromolecules. 1994;27:4733–45.

    Article  Google Scholar 

  11. Williams J, Eisenberg A. Methyl group tunneling and viscoelastic relaxation in poly(methyl methacrylate). Macromolecules. 1978;11:700–7.

    Article  CAS  Google Scholar 

  12. Kuebler SC, Schaefer DJ, Boeffel C, Pawelzik U, Spiess HW. 2D Exchange NMR investigation of the α-relaxation in poly(ethyl methacrylate) as compared to poly(methyl methacrylate). Macromolecules. 1997;30:6597–609.

    Article  CAS  Google Scholar 

  13. Etienne S, Tetu S, David L, Ménissez C, Duval E. Relaxation processes in a glassy polymer containing methanol molecules. Mater Sci Eng A. 2004;370:273–7.

    Article  Google Scholar 

  14. Kalogeras IM. Contradicting perturbations of the segmental and secondary relaxation dynamics of polymer strands constrained in nanopores. Acta Mater. 2005;53:1621–30.

    Article  CAS  Google Scholar 

  15. Perez J, Cavaille JY, David L. New experimental features and revisiting the α and β mechanical relaxation in glasses and glass-forming liquids. J Mol Struct. 1999;479:183–94.

    Article  CAS  Google Scholar 

  16. Muzeau E, Perez J, Johari GP. Mechanical spectrometry of the β-relaxation in poly(methyl methacrylate). Macromolecules. 1991;24:4713–23.

    Article  CAS  Google Scholar 

  17. Nakamura N, Katoh H, Teramoto Y. Mathematical approach for the dynamic testing technique. J Therm Anal. 1993;40:1313–20.

    Article  CAS  Google Scholar 

  18. Tetsutani T, Kakizaki M, Hideshima T. Relaxation spectroscopy of the dielectric β-relaxation in poly(n-alkyl methacrylate)s by absorbtion–current measurements. I Dielectric relaxation spectra for atactic polymers. Polym J. 1982;14:305–21.

    Article  CAS  Google Scholar 

  19. Tetsutani T, Kakizaki M, Hideshima T. Relaxation spectroscopy of the dielectric β-relaxation in poly(n-alkyl methacrylate)s by absorbtion–current measurements. II Dielectric relaxation spectrum for isotactic poly(methyl methacrylate). Polym J. 1982;14:471–6.

    Article  CAS  Google Scholar 

  20. Alves NM, Mano JF, Gómez Ribelles JL, Gómez Tejedor JA. Departure from the Vogel behavior in the glass transition-thermally stimulated recovery, creep and dynamic mechanical analysis studies. Polymer. 2004;45:1007–17.

    Article  CAS  Google Scholar 

  21. Sy JW, Mijovic J. Reorientational dynamics of poly(vinylidene fluoride)/poly(methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy. Macromolecules. 2000;33:933–46.

    Article  CAS  Google Scholar 

  22. Deng S, Hou M, Ye L. Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym Test. 2007;26:803–13.

    Article  CAS  Google Scholar 

  23. Hagen R, Salmén L, Lavebratt H, Stenberg B. Comparison of dynamic mechanical measurements and T g determinations with two different instruments. Polym Test. 1994;13:113–28.

    Article  CAS  Google Scholar 

  24. Alves NM, Mano JF, Gómez Ribelles JL. Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser. Polym Test. 2003;22:471–81.

    Article  CAS  Google Scholar 

  25. Mascia L. The influence of deformation mode on the dynamic mechanical spectra of lightly plasticized PVC compositions. Polym Test. 1987;7:109–20.

    Article  CAS  Google Scholar 

  26. Mujika F, Carbajal N, Arrese A, Mondragon I. Determination of tensile and compressive moduli by flexural tests. Polym Test. 2006;25:766–71.

    Article  CAS  Google Scholar 

  27. Mano JF, Cahon JP. A simple method for calibrating the temperature in dynamic mechanical analysers and thermal mechanical analysers. Polym Test. 2004;23:423–30.

    Article  CAS  Google Scholar 

  28. Lacík I, Krupa I, Stach M, Kučma A, Jurčiová J, Chodák I. Thermal lag and its practical consequence in the dynamic mechanical analysis of polymers. Polym Test. 2000;19:755–71.

    Article  Google Scholar 

  29. Hirota SI, Tominaga Y, Asai S, Sumita M. Dielectric relaxation behavior of poly(methylmethacrylate) under high-pressure carbon dioxide. J Polym Sci Part B Polym Phys. 2005;43:2951–62.

    Article  CAS  Google Scholar 

  30. Sperling LH. Introduction to physical polymer science. 4th ed. New York: Wiley; 2006.

    Google Scholar 

  31. Jackle J. Models of the glass transition. Rep Prog Phys. 1986;49:171–231.

    Article  Google Scholar 

  32. Cristea M, Ionita D, Simionescu BC. A new insight in the dynamo-mechanical behavior of poly(ethylene terephthalate). Eur Polym J. 2010;46:2005–12.

    Article  CAS  Google Scholar 

  33. Starkweather HW Jr. Noncooperative relaxations. Macromolecules. 1988;21:1798–802.

    Article  CAS  Google Scholar 

  34. Garwe F, Schönhals A, Lockwenz H, Beiner M, Schröter K, Donth E. Influence of cooperative α dynamics on local β relaxation during the development of the dynamic glass transition in poly(n-alkyl methacrylate)s. Macromolecules. 1996;29:247–54.

    Article  CAS  Google Scholar 

  35. Schönhals A, Schlosser E. Dielectric relaxation in polymeric solids. Part I A new model for the interpretation of the shape of the dielectric relaxation function. Colloid Polym Sci. 1989;267:125–32.

    Article  Google Scholar 

  36. Hensel A, Dobbertin J, Schawe JEK, Boller A, Schick C. Temperature modulated calorimetry and dielectric spectroscopy in the glass transition region of polymers. J Therm Anal. 1996;46:935–54.

    Article  CAS  Google Scholar 

  37. Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc. 1955;77:3701–7.

    Article  CAS  Google Scholar 

  38. Ferry JD. Viscoelastic properties of polymers. 3rd ed. New York: Wiley; 1980.

    Google Scholar 

  39. Capodagli J, Lakes R. Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time–temperature superposition. Rheol Acta. 2008;47:777–86.

    Article  CAS  Google Scholar 

  40. Alves NM, Gómez Ribelles JL, Gómez Tejedor JA, Mano JF. Viscoelastic behavior of poly(methyl methacrylate) networks with different cross-linking degrees. Macromolecules. 2004;37:3735–44.

    Article  CAS  Google Scholar 

  41. Mathioudakis GN, Patsidis AC, Psarras GC. Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim. 2014;116:27–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Post‐Doctoral Programme POSDRU/159/1.5/S/137516, project co‐funded from European Social Fund through the Human Resources Sectorial Operational Program 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ionita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionita, D., Cristea, M. & Banabic, D. Viscoelastic behavior of PMMA in relation to deformation mode. J Therm Anal Calorim 120, 1775–1783 (2015). https://doi.org/10.1007/s10973-015-4558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4558-4

Keywords

Navigation