Skip to main content
Log in

Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with β-nucleating agent

The role of melt structures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The melt structure of isotactic polypropylene (iPP) nucleated with 1.0 mass% multi-walled carbon nanotubes (CNTs) and 0.05 mass% rare earth β-phase nucleating agent (WBG-II) was tuned by changing the fusion temperature T f. In this way, the role of melt structure in the crystallization behavior and polymorphic composition of the sample was studied by calorimetry, X-ray diffraction, and scanning electronic microscopy. In this system, the sample cannot form any β-phase when T f = 200 °C, since the α-nucleation efficiency (α-NE) of CNTs was obviously higher than the β-NE of WBG-II. By tuning T f, the content of ordered structures in iPP melt was controlled and it was found that the polymorphic composition of the sample can be efficiently controlled. When T f was in the range of 166–174 °C, an amount of ordered structures survived in iPP melt, resulting in a significant increase of β-phase proportion; moreover, study on the crystallization behaviors of single CNTs-filled iPP and WBG-II-nucleated iPP (iPP/CNTs and iPP/WBG-II, respectively) revealed that the α-NE of iPP/CNTs stayed almost constant as T f varies from 200 to 166 °C; meanwhile, the β-NE of iPP/WBG-II increased gradually. Once T f decreased to 174 °C and lower, the NE of iPP/WBG-II became higher than that of iPP/CNTs; meanwhile, WBG-II began to play determining role in the polymorphic composition and enhanced the β-phase proportion of iPP nucleated with CNTs/WBG-II. The findings of this study brought a new pathway to control the polymorphic composition and mechanical properties of iPP/CNTs composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Natta G, Corradini P. Structure and properties of isotactic polypropylene. Nuovo Cim. 1960;15(1):40–51.

    Article  CAS  Google Scholar 

  2. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M. Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler-Natta isotactic polypropylene. Eur Polym J. 2012;48(2):425–34.

    Article  CAS  Google Scholar 

  3. Grein C. Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.

    Article  CAS  Google Scholar 

  4. Kang Jian, Liu Dongming, Cao Ya, Chen Jinyao, Yang Feng, Xiang Ming. Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res. 2014;. doi:10.1007/s10965-014-0485-5.

    Google Scholar 

  5. Dean DM, Rebenfeld L, Register RA, Hsiao BS. J Meter Sci. 1998;33(19):4797–812.

    Article  CAS  Google Scholar 

  6. Menyhard A, Varga J, Liber A, Belina G. Polymer blends based on the β-modification of polypropylene. Eur Polym J. 2005;41:669–77.

    Article  CAS  Google Scholar 

  7. Varga J, Ehrenstein GW. High temperature hedritic crystallization of the β modification isotactic polypropylene. Colloid Polym Sci. 1997;275:511–9.

    Article  CAS  Google Scholar 

  8. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B. 2002;41(4):1121–71.

    Article  Google Scholar 

  9. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res. 2013;20(2):1–11.

    Article  CAS  Google Scholar 

  10. Bruckner S, Phillips PJ, Mezghani K, Meille SV. On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Comm. 1997;18(1):1–7.

    Article  Google Scholar 

  11. De Rosa C, Auriemma F, Paolillo M, Resconi L, Camurati I. Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene: effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules. 2005;38(22):9143–54.

    Article  Google Scholar 

  12. Lotz B, Wittmann J, Lovinger A. Structure and morphology of polypropylenes. Polymer. 1996;37:4979–92.

    Article  CAS  Google Scholar 

  13. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M. Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci. 2013;130(1):25–38.

    Article  CAS  Google Scholar 

  14. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F, Xiang M. Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res. 2014;21(485):1–10.

    Google Scholar 

  15. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H. Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules. 2007;40(8):2745–50.

    Article  CAS  Google Scholar 

  16. Song B, Wang Y, Bai H, Liu L, Li Y, Zhang J, Zhou Z. Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. J Therm Anal Calorim. 2009;99(2):563–70.

    Article  Google Scholar 

  17. Luo F, Geng C, Wang K, Deng H, Chen F, Fu Q, Na B. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules. 2009;42(23):9325–31.

    Article  CAS  Google Scholar 

  18. Kang J, Chen J, Cao Y, Li H. Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer. 2010;51(1):249–56.

    Article  CAS  Google Scholar 

  19. Chen Z, Wang B, Kang J, Peng H, Chen J, Yang F, Cao Y, Li H, Xiang M. Crystallization behavior and morphology of β-nucleated isotactic polypropylene with different stereo-defect distribution. Polym Adv Technol. 2014;25(4):353–63.

    Article  CAS  Google Scholar 

  20. Wu T, Xiang M, Cao Y, Kang J, Yang F. Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv. 2014;4:36689–702.

    Article  CAS  Google Scholar 

  21. Fujiwara Y. Das Doppelschmelz-verhalten der β-Phase des isotaktischen polypropylens. Colloid Polym Sci. 1975;253:273–82.

    Article  CAS  Google Scholar 

  22. Lovinger A, Chua J, Gryte C. Studies on the α- and β-forms of isotactic polypropylene by crystallization in temperature gradient. J Polym Sci Polym Phys Edn. 1977;15:641–56.

    Article  CAS  Google Scholar 

  23. Liu Q, Sun X, Li H, Yan S. Orientation-induced crystallization of isotactic polypropylene. Polymer. 2013;54(17):4404–21.

    Article  CAS  Google Scholar 

  24. Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B. 1996;34:657–70.

    Article  CAS  Google Scholar 

  25. Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B. Synergistic toughening of polypropylene random copolymer at low temperature: β-modification and annealing. Mat Sci Eng. 2011;528(22–23):7052–9.

    Article  CAS  Google Scholar 

  26. Hsiao MC, Liao SH, Lin YF, Weng CC, Tsai HM, Ma CC. Polypropylene-grafted multi-walled carbon nanotube reinforced polypropylene composite bipolar plates in polymer electrolyte membrane fuel cells. Energy Environ Sci. 2011;4(2):543–50.

    Article  CAS  Google Scholar 

  27. Abu-Abdeen M, Ayesh A, Al Jaafari A. Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites. J Polym Res. 2012;19(3):1–9.

    Article  CAS  Google Scholar 

  28. El Shafee E, El Gamal M, Isa M. Electrical properties of multi walled carbon nanotubes/poly(vinylidene fluoride/trifluoroethylene) nanocomposites. J Polym Res. 2011;19(1):1–8.

    Google Scholar 

  29. Jiang Z, Chen Y, Liu Z. The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions. J Polym Res. 2014;21(451):1–15.

    Google Scholar 

  30. Cheng HKF, Chong MF, Liu E, Zhou K, Li L. Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites. J Therm Anal Calorim. 2014;117(1):63–71.

    Article  CAS  Google Scholar 

  31. Marosfoi BB, Szabo A, Marosi G, Tabuani D, Camino G, Pagliari S. Thermal and spectroscopic characterization of polypropylene-carbon nanotube composites. J Therm Anal Calorim. 2006;86(3):669–73.

    Article  CAS  Google Scholar 

  32. Wang ZJ, Kwon DJ, Gu GY, Kim HS, Kim DS, Lee CS. Mechanical and interfacial evaluation of CNT/polypropylene composites and monitoring of damage using electrical resistance measurements. Composites Sci Technol. 2013;81:69–75.

    Article  CAS  Google Scholar 

  33. Prashantha K. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett. 2008;2(10):735–45.

    Article  CAS  Google Scholar 

  34. Reyes-de Vaaben S, Aguilar A, Avalos F, Ramos-de Valle LF. Carbon nanoparticles as effective nucleating agents for polypropylene. J Therm Anal Calorim. 2008;93(3):947–52.

    Article  CAS  Google Scholar 

  35. Chen YH, Zhong GJ, Lei J, Li ZM, Hsiao BS. In situ synchrotron X-ray scattering study on isotactic polypropylene crystallization under the coexistence of shear flow and carbon nanotubes. Macromolecules. 2011;44(20):8080–92.

    Article  CAS  Google Scholar 

  36. Wang SW, Yang W, Bao RY, Wang B, Xie BH, Yang MB. The enhanced nucleating ability of carbon nanotube-supported β-nucleating agent in isotactic polypropylene. Colloid Polym Sci. 2010;288(6):681–8.

    Article  CAS  Google Scholar 

  37. Zhang N, Zhang Q, Wang K, Deng H, Fu Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J Therm Anal Calorim. 2011;107(2):733–43.

    Article  Google Scholar 

  38. Chen C, Zhang Z, Ding Q, Wang C, Mai K. Influence of different β-nucleating agent on crystallization behavior, morphology, and melting characteristic of multiwalled carbon nanotube-filled isotactic polypropylene nanocomposites. Polym Composites. 2014;. doi:10.1002/pc.22981.

    Google Scholar 

  39. Zhao S, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B. 2010;48(6):653–65.

    Article  CAS  Google Scholar 

  40. Fillon B, Lotz B, Thierry A, Wittmann J. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B. 1993;31(10):1395–405.

    Article  CAS  Google Scholar 

  41. Fillon B, Wittmann J, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B. 1993;31(10):1383–93.

    Article  CAS  Google Scholar 

  42. Li X, Su F, Ji Y, Tian N, Lu J, Wang Z, Qi Z, Li L. Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter. 2013;9(35):8579–88.

    Article  CAS  Google Scholar 

  43. Lorenzo AT, Muller AJ. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B. 2008;46(14):1478–87.

    Article  CAS  Google Scholar 

  44. Muller AJ, Lorenzo AT, Arnal ML, de Fierro AB, Abetz V. Self-nucleation behavior of the polyethylene block as function of the confinement degree in polyethylene-block-polystyrene diblock copolymers. Macromol Symp. 2006;240(1):114–22.

    Article  CAS  Google Scholar 

  45. Lorenzo AT, Arnal ML, Sanchez JJ, Muller AJ. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B. 2006;44(12):1738–50.

    Article  CAS  Google Scholar 

  46. Muller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30(5):559–603.

    Article  Google Scholar 

  47. Li H, Yan S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules. 2011;44(3):417–28.

    Article  CAS  Google Scholar 

  48. Li H, Sun X, Yan S, Schultz JM. Initial stage of iPP β to α growth transition induced by stepwise crystallization. Macromolecules. 2008;41(13):5062–4.

    Article  CAS  Google Scholar 

  49. Cheng S, Hu W, Ma Y, Yan S. Epitaxial polymer crystal growth influenced by partial melting of the fiber in the single-polymer composites. Polymer. 2007;48(14):4264–70.

    Article  CAS  Google Scholar 

  50. Li H, Jiang S, Wang J, Wang D, Yan S. Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules. 2003;36(8):2802–7.

    Article  CAS  Google Scholar 

  51. Cavallo D, Azzurri F, Balzano L, Funari SrS, Alfonso GC. Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules. 2010;43(22):9394–400.

    Article  CAS  Google Scholar 

  52. Azzurri F, Alfonso GC. Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules. 2008;41:1377–83.

    Article  CAS  Google Scholar 

  53. Azzurri F, Alfonso GC. Lifetime of shear-induced crystal nucleation precursors. Macromolecules. 2005;38:1723–8.

    Article  CAS  Google Scholar 

  54. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C. Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer. 2012;53(8):1791–800.

    Article  CAS  Google Scholar 

  55. Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G, Barbara H, Gunter R, Shen C. Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules. 2012;45(21):8933–7.

    Article  CAS  Google Scholar 

  56. Kang J, Weng GS, Chen ZF, Chen JY, Cao Y, Yang F, Xiang M. New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv. 2014;4(56):29514–26.

    Article  CAS  Google Scholar 

  57. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J, Cao Y, Li H, Yang F, Xiang M. Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents —effects of thermal conditions. J Appl Polym Sci. 2014;131(7):40115.

    Article  Google Scholar 

  58. Varga J, Menyhard A. Effect of solubility and nucleating duality of N, N’-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40(7):2422–31.

    Article  CAS  Google Scholar 

  59. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res. 2014;21(384):1–12.

    Google Scholar 

  60. Kang J, Zhang J, Chen Z, Yang F, Chen J, Cao Y, Xiang M. Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res. 2014;21(506):1–9.

    Google Scholar 

  61. Varga J, Schulek-Toth F, Ille A. Effect of fusion condition of β-polypropylene on the new crystallization. Colloid Polym Sci. 1991;269:655–64.

    Article  CAS  Google Scholar 

  62. Varga J. Supermolecular structure of isotactic polypropylene—review. J Mater Sci. 1992;27:2557–79.

    Article  CAS  Google Scholar 

  63. Lee SH, Cho E, Jeon SH, Youn JR. Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon. 2007;45(14):2810–22.

    Article  CAS  Google Scholar 

  64. Horvath ZSI, Stoll K, Varga J. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. Express Polym Lett. 2010;4(2):101–14.

    Article  CAS  Google Scholar 

  65. Turner-Jones A, Aizlewood J, Beckett D. Crystalline forms of isotactic polypropylene. Makromol Chem. 1964;75:134.

    Article  CAS  Google Scholar 

  66. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li H, Yang F, Xiang M. Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution—the role of dual-selective β-nucleation agent. Polym Adv Technol. 2014;25(1):97–107.

    Article  CAS  Google Scholar 

  67. Olley RH, Hodge AM, Bassett DC. Permanganic etchant for polyolefins. J Polym Sci. 1979;17:627–43.

    CAS  Google Scholar 

  68. Olley RH, Bassett DC. An improved permanganic etchant for polyolefines. Polymer. 1982;23:1707–10.

    Article  CAS  Google Scholar 

  69. Scudla J, Raab M, Eichhorn KJ, Strachota A. Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer. 2003;44(16):4655–64.

    Article  CAS  Google Scholar 

  70. Kotek J, Kelnar I, Baldrian J, Raab M. Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers. Eur Polym J. 2004;40(4):679–84.

    Article  CAS  Google Scholar 

  71. Li JX, Cheung WL, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40(5):1219–22.

    Article  CAS  Google Scholar 

  72. Li JX, Cheung WL, Chan CM. On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer. 1999;40:2089–102.

    Article  CAS  Google Scholar 

  73. Varga J. Melting memory effect of the β-modification of polypropylene. J Thermal Anal. 1986;31:165–72.

    Article  CAS  Google Scholar 

  74. Varga J. Modification of polypropylene and its two component systems. J Therm Anal. 1989;35:1891–912.

    Article  CAS  Google Scholar 

  75. Varga J, Garzo G, Ille A. Kristallisation, umkristallisation und schmelzen der modifikation des polypropylenes. Angew Makromol Chem. 1986;142:171–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Sichuan University Scientific Research Foundation for Young Teachers (2012SCU11075) and National Science Foundation of China (NSFC 51203106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyao Chen or Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., He, J., Chen, Z. et al. Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with β-nucleating agent. J Therm Anal Calorim 119, 1769–1780 (2015). https://doi.org/10.1007/s10973-014-4338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4338-6

Keywords

Navigation