Skip to main content
Log in

Kinetic and thermal studies of removal of CrO 2−4 ions by ettringite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ettringite was prepared in the presence of various dosages of CrO 2−4 ions at three different temperatures. X-ray diffraction (XRD) and differential scanning calorimetery (DSC) results showed shift in the peaks characterized to ettringite as the result of formation of Cr-substituted ettringite. Substitution of SO 2−4 by CrO 2−4 ions in ettringite crystal resulted in delay in the rate of its formation, as well as reduction in the crystal diameters. However, the crystal diameters and rate of formation of both ettringite and Cr-substituted ettringite were increased by increasing temperature of preparation, and this was confirmed by scanning electron microscope (SEM) micrographs. The thermodynamic parameters: the enthalpy, entropy, and Gibbs free energy changes for substitution process were studied. It is concluded that the removal of chromate ions by ettringite is an endothermic spontaneous process. The positive value of Δ suggests increasing in randomness during the removal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conner JR. Chemical fixation and solidification of hazardous wastes. New York: Van Nostrand Reinhold; 1990.

    Google Scholar 

  2. Van der Sloot HA. Characterization of the leaching behavior of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment. Waste Manag. 2002;22:181–6.

    Article  Google Scholar 

  3. Andres A, Velasco FM, Coz A, Ruiz C, Viguri JR, Irabien JA. Treatment of foundry sludge by stabilization/solidification with cement and siliceous binders. Fresenius Environ Bull. 2002;11:849–53.

    CAS  Google Scholar 

  4. Stepniewska Z, Bucior K, Bennicilli R. The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma. 2004;122:291–6.

    Article  CAS  Google Scholar 

  5. Dermatas D, Meng X. Utilization of fly-ash for stabilization, solidification of heavy metal contaminated soils. Eng Geol. 2003;70:377–94.

    Article  Google Scholar 

  6. Dermatas D, Moon DH. Chromium leaching and immobilization in treated soils. J Environ Eng Sci. 2005;23(1):75–85.

    Google Scholar 

  7. Meena A, Rajagopal C. Comparative studies on adsorptive removal of chromium from contaminated water using different adsorbents. Indian J Chem Technol. 2003;10(1):72–8.

    CAS  Google Scholar 

  8. Park J-Y, Kang W-H, Hwang I. Hexavalent chromium uptake and release in cement pastes. Environ Eng Sci. 2006;23(1):133–40.

    Article  CAS  Google Scholar 

  9. Fukuoka H, Shigemoto N, Inomo H, Shiraki W. Chromate adsorption on iron oxyhydroxides with different crystal forms in the presence of soil materials. J Chem Eng Jpn. 2008;41(2):69–75.

    Article  CAS  Google Scholar 

  10. Moore AE, Taylor HFW. Acta Crystallogr. Sect B. 1970;26:386–93.

    Article  CAS  Google Scholar 

  11. Zhang M, Reardon EJ. Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ Sci Technol. 2003;37(13):2947–52.

    Article  CAS  Google Scholar 

  12. Klemm W, Bhatty JI. Fixation of heavy metals as oxyanion- substituted ettringites portland cement association R&D, N.2431a. 2002.

  13. Poellmann H, Auer S, Kuzel HJ. Solid solution of ettringites: part II: incorporation of B(OH) 4 and CrO4 2− in 3CaO·Al2O3·3CaSO4·32H2O. Cem Concr Res. 1993;23:422–30.

    Article  CAS  Google Scholar 

  14. Sharp JH, Milestone NB, Hill J, Miller EW. Cementitious systems for encapsulation of intermediate level waste: The 9th International Conference on Radioactive Waste Management and Environmental Remediation, Oxford, UK. 2003.

  15. Terai T, Mikuni A, Komatsu R, Ikeda K. Synthesis of Cr(VI)-ettringite in portlandite suspensions as a function of pH. J Ceram Soc Jpn. 2006;114(13):299–302.

    Article  CAS  Google Scholar 

  16. Hashem FS, Amin MS, Hekal EE. Kinetics of leaching of Cr3+ and Cu2+ ions from doped hydrated C3A-gypusm matrix. HBRC. 2011;7(3):1–11.

    Google Scholar 

  17. Jun-kang L, Yan-xin W. Experiments on the synthesis of chromium-containing ettringites. Concrete. 2004;7:005.

    Google Scholar 

  18. Barnett SJ, Macphee DE, Lachowski EE, Crammond NJ. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem Concr Res. 2002;32:719–30.

    Article  CAS  Google Scholar 

  19. Kagoku KK. Chemial engineering handbook. 5th ed. Tokyo: Maruzen; 1988. p. 734.

    Google Scholar 

  20. Hiraga Y, Shigemoto N. Behaviors of CrO4 2− and Cr3+ during removal based on ettringite synthesis and Ca(OH)2–Al2(SO4)3 addition. J Chem Eng Jpn. 2011;44(1):24–31.

    Article  CAS  Google Scholar 

  21. El Shafei GS, Nasrb IN, Hassanb ASM, Mohammad SGM. Kinetics and thermodynamics of adsorption of cadusafos on soils. J Hazard Mater. 2009;172:1608–16.

    Article  CAS  Google Scholar 

  22. Clark BA, Brown PW. The formation of calcium sulfoaluminate hydrate compounds Part I. Cem Concr Res. 1999;29:1943–8.

    Article  CAS  Google Scholar 

  23. Baur I, Johnson AC. The solubility of selenate-Aft (3CaO·Al2O3·3CaSeO4·37.5H2O) and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O). Cem Concr Res. 2003;33:1741–8.

    Article  CAS  Google Scholar 

  24. Clark BA, Brown PW. The formation of calcium sulfoaluminate hydrate compounds, Part II. Cem Concr Res. 2000;30:233–40.

    Article  CAS  Google Scholar 

  25. McCarthy GJ, Hassett DJ, Bender JA. Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization, In Advanced Cementitious Systems—mechanisms and properties, materials research society symposium proceedings series. 1992: 245.

  26. Perkins RB, Palmer CD. Solubility of chromate hydrocalumite (3CaO·Al2O3·CaCrO4·nH2O) at 5–75 °C. Cem Concr Res. 2001;31:983–92.

    Article  CAS  Google Scholar 

  27. Cody AM, Lee H, Cody RD, Spry PG. The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al (OH)6]2(SO4)3·26H2O]. Cem Concr Res. 2004;34:869–81.

    Article  CAS  Google Scholar 

  28. Amin MS, Abo-El-Enein SA, Abdel Rahman A, Alfalous Khaled A. Artificial pozzolanic cement pastes containing burnt clay with and without silica fume: physicochemical, microstructural and thermal characteristic. J Therm Anal Calorim. 2012;107:1105–15.

    Article  CAS  Google Scholar 

  29. El-Gamal SMA, Hashem FS, Amin MS. Thermal resistance of hardened cement pastes containing vermiculite and expanded vermiculite. J Therm Anal Calorim. 2012;109:217–26.

    Article  CAS  Google Scholar 

  30. Hashem FS, Amin MS, El-Gamal SMA. Improvement of acid resistance of Portland cement pastes using rice husk ash and cement kiln dust as additives. J Therm Anal Calorim. 2013;111:1391–8.

    Article  CAS  Google Scholar 

  31. Amin MS, El-Gamal SMA, Hashem FS. Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. J Therm Anal Calorim. 2013;112:1253–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, F.S., Amin, M.S. Kinetic and thermal studies of removal of CrO 2−4 ions by ettringite. J Therm Anal Calorim 116, 835–844 (2014). https://doi.org/10.1007/s10973-013-3592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3592-3

Keywords

Navigation