Skip to main content
Log in

Non-isothermal crystallization kinetics of high density polyethylene/titanium dioxide composites via melt blending

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, non-isothermal crystallization of neat high density polyethylene (HDPE) and HDPE/titanium dioxide (TiO2) composite was studied using differential scanning calorimetry. Non-isothermal kinetic parameters were determined by Jeziorny approach and Mo’s method. Polarized optical microscopy and wide angle X-ray diffraction were applied to observe the crystal morphology and investigate the crystal structure, respectively. It was found TiO2 particles could act as nucleating agent during the crystallization process and accelerate the crystallization rate. The Avrami index indicated nucleating type and growth of spherulite of HDPE was relatively simple. The result of activation energy indicated it was more and more difficult for the polymer chains to crystallize into the crystal lattice as the crystallization progressed. HDPE/TiO2 composites exhibited lower ΔE values, suggesting TiO2 particle could make the crystallization of HDPE easier. HDPE/TiO2 composites had much smaller spherulite size than that of neat HDPE. HDPE formed more perfect crystal when TiO2 particles were added into its matrix without changing the original crystal structure of HDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zou P, Tang SW, Fu ZZ, Xiong HG. Isothermal and non-isothermal crystallization kinetics of modified rape straw flour/high-density polyethylene composites. Int J Therm Sci. 2009;48(4):837–46.

    Article  CAS  Google Scholar 

  2. Jung J, Kim J, Uhm YR, Jeon J-K, Lee S, Lee HM, et al. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites. Thermochim Acta. 2010;499(1–2):8–14.

    Article  CAS  Google Scholar 

  3. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485(1–2):65–71.

    Article  CAS  Google Scholar 

  4. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R. 2000;28(1–2):1–63.

    Article  Google Scholar 

  5. Brandt K, Salikov V, Oezcoban H, Staron P, Schreyer A, Prado LASA, et al. Novel ceramic-polymer composites synthesized by compaction of polymer-encapsulated TiO2-nanoparticles. Compos Sci Technol. 2011;72(1):65–71.

    Article  CAS  Google Scholar 

  6. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891–959.

    Article  CAS  Google Scholar 

  7. Mastai Y, Diamant Y, Aruna ST, Zaban A. TiO2 nanocrystalline pigmented polyethylene foils for radiative cooling applications: synthesis and characterization. Langmuir. 2001;17(Compendex):7118–23.

    Article  CAS  Google Scholar 

  8. Li J, Fang Z, Tong L, Gu A, Liu F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur Polym J. 2006;42(12):3230–5.

    Article  CAS  Google Scholar 

  9. Weng WG, Chen GH, Wu DJ. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer. 2003;44(26):8119–32.

    Article  CAS  Google Scholar 

  10. Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN. Non-isothermal crystallisation kinetics of in situ prepared poly(epsilon-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys. 2007;208(4):364–76.

    Article  CAS  Google Scholar 

  11. Jeziorny A. Parameters characterizing kinetics of nonisothermal crystallizaiton of poly (ethylene-terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  12. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Article  Google Scholar 

  13. Qian J, He P. Non-isothermal crystallization of HDPE/nano-SiO2 composite. J Mater Sci. 2003;38(Compendex):2299–304.

    CAS  Google Scholar 

  14. Chen X, Wang L, Liu Y, Shi J, Shi H. Nonisothermal crystallization kinetics of high-density polyethylene/barium sulfate nanocomposites. Polym Eng Sci. 2009;49(12):2342–9.

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Bikiaris DN, Achilias DS. Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate). Thermochim Acta. 2007;457(1–2):41–54.

    Article  CAS  Google Scholar 

  16. Jayasree TK, Predeep P. Non-isothermal crystallization behavior of styrene butadiene rubber/high density polyethylene binary blends. J Therm Anal Calorim. 2012;108(3):1151–60.

    Article  CAS  Google Scholar 

  17. Alvarez VA, Pérez CJ. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal Calorim. 2012;107(2):633–43.

    Article  CAS  Google Scholar 

  18. Hashimoto M, Takadama H, Mizuno M, Kokubo T. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: effect of filler content. J Mater Sci Mater M. 2007;18(4):661–8.

    Article  CAS  Google Scholar 

  19. Kasanen J, Suvanto M, Pakkanen TT. Improved adhesion of TiO2-based multilayer coating on HDPE and characterization of photocatalysis. J Appl Polym Sci. 2011;119(4):2235–45.

    Article  CAS  Google Scholar 

  20. Takadama H, Hashimoto M, Takigawa Y, Mizuno M, Kokubo T. Effect of melt flow rate of polyethylene on bioactivity and mechanical properties of polyethylene/titania composites. Bioceramics. 2004;16(245–2):569–72.

    Google Scholar 

  21. Chen S, Jin J, Zhang J. Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1). J Therm Anal Calorim. 2011;103(1):229–36.

    Article  CAS  Google Scholar 

  22. Liu XH, Wu QJ. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur Polym J. 2002;38(7):1383–9.

    Article  CAS  Google Scholar 

  23. Zhang J, Chen S, Su J, Shi X, Jin J, Wang X, et al. Non-isothermal crystallization kinetics and melting behavior of EAA with different acrylic acid content. J Therm Anal Calorim. 2009;97(3):959–67.

    Article  CAS  Google Scholar 

  24. Huang YP, Chen GM, Yao Z, Li HW, Wu Y. Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate. Eur Polym J. 2005;41(11):2753–60.

    Article  CAS  Google Scholar 

  25. Peng Z, Kong LX, Li SD. Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polymer. 2005;46(6):1949–55.

    Article  CAS  Google Scholar 

  26. Jain S, Goossens H, van Duin M, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46(20):8805–18.

    Article  CAS  Google Scholar 

  27. Kim JY, Park HS, Kim SH. Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization. Polymer. 2006;47(4):1379–89.

    Article  CAS  Google Scholar 

  28. Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwong S. Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim. 2011;103(3):1017–26.

    Article  CAS  Google Scholar 

  29. Wang JB, Dou Q. Non-isothernial crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci B. 2007;46(5):987–1001.

    Article  CAS  Google Scholar 

  30. Zhang J, Chen S, Jin J, Shi X, Wang X, Xu Z. Non-isothermal melt crystallization kinetics for ethylene-acrylic acid copolymer in diluents via thermally induced phase separation. J Therm Anal Calorim. 2010;101(1):243–54.

    Article  CAS  Google Scholar 

  31. Jin J, Chen SJ, Zhang J. Non-isothermal crystallization kinetics of partially miscible ethylene-vinyl acetate copolymer/low density polyethylene blends. Express Polym Lett. 2010;4(3):141–52.

    Article  CAS  Google Scholar 

  32. Qin JL, Li ZT. Nonisothermal crystallization, melting behavior, and morphology of PP/EPPE blends. J Appl Polym Sci. 2010;115(2):1256–63.

    Article  CAS  Google Scholar 

  33. Huang H, Gu LX, Ozaki Y. Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polymer. 2006;47(11):3935–45.

    Article  CAS  Google Scholar 

  34. Apiwanthanakorn N, Supaphol P, Nithitanakul M. Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate). Polym Test. 2004;23(7):817–26.

    Article  CAS  Google Scholar 

  35. Achilias DS, Papageorgiou GZ, Karayannidis GR. Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol Chem Phy. 2005;206(15):1511–9.

    Article  CAS  Google Scholar 

  36. Qin JL, Guo SQ, Li ZT. Melting behavior and isothermal crystallization kinetics of PP/mLLDPE blends. J Polym Res. 2008;15(5):413–20.

    Article  CAS  Google Scholar 

  37. Huang JW, Wen YL, Kang CC, Tseng WJ, Yeh MY. Nonisothermal crystallization of high density polyethylene and nanoscale calcium carbonate composites. Polym Eng Sci. 2008;48(7):1268–78.

    Article  CAS  Google Scholar 

  38. Song S, Wu P, Ye M, Feng J, Yang Y. Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer. 2008;49(12):2964–73.

    Article  CAS  Google Scholar 

  39. Kim J, Kwak S, Hong SM, Lee JR, Takahara A, Seo Y. Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromolecules. 2010;43(24):10545–53.

    Article  CAS  Google Scholar 

  40. Wang SC, Zhang J, Chen SJ, Zhu H. Crystal structure and melting behavior of homo-polypropylene and heterophasic ethylene–propylene copolymer after long time heat treatment. J Cryst Growth. 2012;355(1):151–8.

    Article  CAS  Google Scholar 

  41. Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2007;40(17):6268–76.

    Article  CAS  Google Scholar 

  42. Purohit PJ, Wang D-Y, Emmerling F, Thuenemann AF, Heinrich G, Schoenhals A. Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods. Polymer. 2012;53(11):2245–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study was provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, J. Non-isothermal crystallization kinetics of high density polyethylene/titanium dioxide composites via melt blending. J Therm Anal Calorim 115, 63–71 (2014). https://doi.org/10.1007/s10973-013-3241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3241-x

Keywords

Navigation