Skip to main content
Log in

The β-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene-terephthalate) fiber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A serial of β-nucleated polypropylene (β-PP)/nano-calcium carbonate (nano-CaCO3)/ short poly(ethylene-terephthalate) (PET) fiber composites were prepared using extrusion blending. Maleic anhydride grafted PP (PP-g-MA) was used to modify the compatibility. The relationships among components, structure, and properties of the PP composites were studied. The results show that adding nano-CaCO3 improved the mechanical properties of the materials. Adding PET fiber increased the rigidity and toughness but the tensile strength decreased. PP-g-MA modified the compatibility of the components of the composites. Both PET fiber and nano-CaCO3 had nucleation effect on the PP crystallization and slightly induced the formation of β crystals. Ternary β-PP/nano-CaCO3/PET fiber composites contained high β-crystal content, and the compatibilizer exhibited synergy effect with β nucleating agent to further increase the β-crystal content in the blends. Mo’s method could satisfactorily describe the nonisothermal crystallization behavior of ternary composites, whereas Jeziorny and Ozawa methods failed to do the same ideally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Phys. 2002;41:1121–71.

    Article  Google Scholar 

  2. Grein C. Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.

    Article  CAS  Google Scholar 

  3. Karger-Kocsis J, Varga J. Effects of beta-alpha transformation on the static and dynamic tensile behaviour of isotactic polypropylene. J Appl Polym Sci. 1996;62:291–300.

    Article  CAS  Google Scholar 

  4. Varga J, Ehrenstein GW, Schlarb AK. Vibration welding of alpha and beta-isotactic polypropylenes: mechanical properties and structure. Express Polym Lett. 2008;2:148–56.

    Article  CAS  Google Scholar 

  5. Chen HB, Karger-Kocsis J, Wu JS, Varga J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer. 2002;43:6505–14.

    Article  CAS  Google Scholar 

  6. Leugering HJ. Einfluss der kristallstuktur und der uberstuktur auf einige eigeschaften von polypropylen. J Makromol Chem. 1967;109:204–16.

    Article  CAS  Google Scholar 

  7. Shi GY, Zhang XD, Qiu ZW. Crystallization kinetics of β-phase polypropylene. Makromol Chem. 1992;193:583–91.

    Article  CAS  Google Scholar 

  8. Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable nucleating agent for isotactic polypropylene. J Appl Polym Sci. 1999;74:2357–68.

    Article  CAS  Google Scholar 

  9. Moitzi J, Skalicky P. Shear-induced crystallization of isotactic polypropylene melts: isothermal WAXS experiments with synchrotron radiation. Polymer. 1993;34:3168–72.

    Article  CAS  Google Scholar 

  10. Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, et al. Structure development during shear flow-induced crystallization of i-PP: in situ small-angle X-ray scattering study. Macromolecules. 2000;33:9385–93.

    Article  CAS  Google Scholar 

  11. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH. Structure development during shear flow-induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules. 2001;34:5902–9.

    Article  CAS  Google Scholar 

  12. Varga J, Karger-Kocsis J. Rules of Supermolecular Structure Formation in Sheared Isotactic Polypropylene Melts. J Polym Sci Part B Polym Phys. 1996;4:657–70.

    Article  Google Scholar 

  13. Lovinger AJ, Chua JO, Gryte CC. Studies on the α and β forms of isotactic polypropylene by crystallization in temperature gradient. J Polym Sci Polym Phys Edn. 1977;15:641–56.

    Article  CAS  Google Scholar 

  14. Roux C, Denault J, Champagne MF. Parameters regulating interfacial and mechanical properties of short glass fiber reinforced polypropylene. J Appl Polym Sci. 1999;78:2047–60.

    Article  Google Scholar 

  15. Rhee KY, Lee SG, Lee JH. Fracture and impact behaviour of solid phase formed polypropylene composites with long glass fibres. Mater Sci Technol. 2005;21:743–8.

    Article  CAS  Google Scholar 

  16. Vilaseca F, Mendez JA, Lopez JP, Vallejos ME, Barbera L, Pelach MA, et al. Recovered and recycled Kraft fibers as reinforcement of PP composites. Chem Eng J. 2008;138:586–95.

    Article  CAS  Google Scholar 

  17. Karmaker AC. Effect of water absorption on dimensional stability and impact energy of jute fibre reinforced polypropylene. J Mater Sci Lett. 1997;16(6):462–4.

    Article  CAS  Google Scholar 

  18. Leng PB, Akil HM, Lin OH. Thermal properties of microsilica and nanosilica filled polypropylene composite with epoxy as dispersing aid. J Reinf Plast Comp. 2007;26(8):761–70.

    Article  CAS  Google Scholar 

  19. Gu J, Jia DS, Cheng RS. Polypropylene composite toughened by a novel modified nano-CaCO3. Polym-plast Technol. 2008;47(6):583–9.

    Article  CAS  Google Scholar 

  20. Sarkar M, Dana K, Ghatak S, Banerjee A. Polypropylene-clay composite prepared from Indian bentonite. Bull Mater Sci. 2008;31(1):23–8.

    Article  CAS  Google Scholar 

  21. Chatterjee A, Deopura BL. Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci. 2006;100(5):3574–8.

    Article  CAS  Google Scholar 

  22. Zhang ZS, Chen CY, Wang CG, Zhang JP, Mai KC. A novel highly efficient β-nucleating agent for polypropylene using nano-CaCO3 as a support. Polym Int. 2010;59:1199–204.

    Article  CAS  Google Scholar 

  23. Jazani OM, Arefazar A, Jafari SH, Beheshty MH, Ghaemi A. A study on the effects of sebs-g-mah on the phase morphology and mechanical properties of polypropylene/polycarbonate/SEBS ternary polymer blends. J Appl Polym Sci. 2011;121:2680–7.

    Article  CAS  Google Scholar 

  24. Li Y, Wang D, Zhang JM, Xie XM. Compatibilization and toughening of immiscible ternary blends of polyamide 6, polypropylene (or a propylene—Ethylene copolymer), and polystyrene. J Appl Polym Sci. 2011;119:1652–8.

    Article  CAS  Google Scholar 

  25. Turner-Jones A, Aizlewood J, Beckett D, Beckett R. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75:134–58.

    Article  CAS  Google Scholar 

  26. Yang ZG, Zhang ZS, Tao YJ, Mai KC. Preparation, crystallization behavior, and melting characteristics of β-nucleated isotactic polypropylene blends with polyamide 6. J Appl Polym Sci. 2009;112:1–8.

    Article  Google Scholar 

  27. Herrero CH, Acosta JL. Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)polyphosphazene blends. Polym J. 1994;26:786–96.

    Article  CAS  Google Scholar 

  28. Caze C, Devaux E, Crespy A, Cavrot JP. A new method to determine the Avrami exponent by DSC studies of non-isothermal crystallization from the molten state. Polymer. 1997;38:497–502.

    Article  CAS  Google Scholar 

  29. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  30. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  31. Liu SY, Yu YN, Cui Y, Zhang HF, Mo ZS. Isothermal and nonisothermal crystallization kinetics of nylon-11. J Appl Polym Sci. 1998;70:2371–80.

    Article  CAS  Google Scholar 

  32. Liu TX, Mo ZS, Wang SG, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  33. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  34. Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2012;108:613–20.

    Article  Google Scholar 

Download references

Acknowledgements

The Project was supported by the National Natural Science Foundation of China (Grant No. 21101076) and Major Science and Technology Projects of Guangdong Province, China (Grant No. 2010A080804021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Chen, C., Guan, Z. et al. The β-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene-terephthalate) fiber. J Therm Anal Calorim 114, 229–237 (2013). https://doi.org/10.1007/s10973-013-2956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2956-z

Keywords

Navigation