Skip to main content
Log in

The effect of stoichiometry on curing and properties of epoxy–clay nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Epoxy–clay nanocomposites have been prepared with an organically modified montmorillonite. The epoxy network was based on diglycidyl ether of bisphenol A (DGEBA) cured with diaminodiphenylmethane (DDM). The stoichiometry DGEBA–DDM was varied, the molar ratio of amine hydrogen/epoxy groups, r, ranged from 0.85 to 1.15. The influence of stoichiometry on curing and properties of the nanocomposites was studied using differential scanning calorimetry, dynamic mechanical thermal analysis and X-ray diffraction. All nanocomposites had intercalated clay structures. The clays accelerated the curing reaction whose rate was also increased when increasing r. The heat of reaction, −ΔH (J/g epoxy), increased as r increased, reaching a constant value for r ≥ 1. In the presence of clays −ΔH was lower than in the neat DGEBA–DDM. The glass transition temperature (T g) of the neat epoxy thermosets reached a maximum at r = 1; however, the nanocomposites showed the T g maximum at 0.9 < r < 1. The presence of clay lowered the T g for r > 0.94 and raised T g for r ≤ 0.85. The elastic modulus of neat epoxy thermosets reached a maximum in the rubber state and a minimum in the glassy state at r = 1. The nanocomposites showed similar behavior, but the maximum and the minimum values of the elastic modulus were reached at stoichiometry r < 1. The comparison of the properties of neat epoxy with those of the nanocomposites varying the stoichiometry indicates that the clay itself induces stoichiometric changes in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15:11–29.

    Article  CAS  Google Scholar 

  2. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  3. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  4. Betega de Paiva LB, Morales AR, Valenzuela-Díaz FR. Organoclays: properties, preparation and applications. Appl Clay Sci. 2008;42:8–24.

    Article  CAS  Google Scholar 

  5. Becker O, Simon GP. Epoxy layered silicate nanocomposites. Adv Polym Sci. 2005;179:29–82.

    CAS  Google Scholar 

  6. Qiu J, Wang S. Enhancing polymer performance through graphene sheets. J Appl Polym Sci. 2011;119:3670–4.

    Article  CAS  Google Scholar 

  7. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  CAS  Google Scholar 

  8. Nuhiji B, Attard D, Thorogood G, Hanley T, Magniez K, Fox B. The effect of alternate heating rates during cure on the structure-property relationships of epoxy/MMT clay nanocomposites. Compos Sci Technol. 2011;71:1761–8.

    Article  CAS  Google Scholar 

  9. Prolongo MG, Martinez-Casado FJ, Masegosa RM, Salom C. Curing and dynamic mechanical thermal properties of epoxy/clay nanocomposites. J Nanosci Nanotechnol. 2010;10:2870–9.

    Article  CAS  Google Scholar 

  10. Lan T, Kaviratna PD, Pinnavaia TJ. Epoxy self-polymerization in smectite clays. J Phys Chem Solids. 1996;57:1005–10.

    Article  CAS  Google Scholar 

  11. Wang Z, Pinnavaia TJ. Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem Mater. 1998;10:1820–6.

    Article  CAS  Google Scholar 

  12. Messersmith PB, Giannelis EP. Synthesis and characterization of layered silicate–epoxy nanocomposites. Chem Mater. 1994;6:1719–25.

    Article  CAS  Google Scholar 

  13. Triantafillidis CS, LeBaron PC, Pinnavaia TJ. Thermoset epoxy–clay nanocomposites: the dual role of α,ω-diamines as clay surface modifiers and polymer curing agents. J Solid State Chem. 2002;167:354–62.

    CAS  Google Scholar 

  14. Park J, Jana SC. Effect of plasticization of epoxy networks by organic modifier on exfoliation of nanoclay. Macromolecules. 2003;36:8391–7.

    Article  CAS  Google Scholar 

  15. Brown JM, Curliss D, Vaia RA. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater. 2000;12:3376–84.

    Article  CAS  Google Scholar 

  16. Lan T, Pinnavaia TJ. Clay-reinforced epoxy nanocomposites. Chem Mater. 1994;6:2216–9.

    Article  CAS  Google Scholar 

  17. Hussain F, Chen J, Hojjati M. Epoxy–silicate nanocomposites: cure monitoring and characterization. Mater Sci Eng A. 2007;467:445–6.

    Google Scholar 

  18. Nigam V, Setua DK, Mathur GN, Kar KK. Epoxy–montmorillonite clay nanocomposites: synthesis and characterization. J Appl Polym Sci. 2004;93:2201–10.

    Article  CAS  Google Scholar 

  19. Garea S, Iovu H, Stoleriu S, Voicu G. Synthesis and characterization of new nanocomposites based on epoxy resins and organophilic clays. Polym Int. 2007;56:1106–14.

    Article  CAS  Google Scholar 

  20. Gupta VB, Drzal LT, Lee CY. The temperature-dependence of some mechanical properties of a cured epoxy resin system. Polym Eng Sci. 1985;25:812–23.

    Article  CAS  Google Scholar 

  21. Palmese GR, McCullough RL. Effect of epoxy–amine stoichiometry on cured resin material properties. J Appl Polym Sci. 1992;46:1863–73.

    Article  CAS  Google Scholar 

  22. Meyer F, Sanz G, Eceiza A, Mondragon I, Mijovic J. The effect of stoichiometry and thermal history during cure on structure and properties of epoxy networks. Polymer. 1995;36:1407–14.

    Article  CAS  Google Scholar 

  23. Munz M, Sturm H, Stark W. Mechanical gradient interphase by interdiffusion antiplasticisation effect-study and epoxy/thermoplastic system. Polymer. 2005;46:9097–112.

    Article  CAS  Google Scholar 

  24. Sánchez-Cabezudo M, Prolongo MG, Salom C, Masegosa RM. Cure kinetics of epoxy resin and thermoplastic polymer. J Therm Anal Calorim. 2006;86:699–705.

    Article  Google Scholar 

  25. Román F, Montserrat S, Hutchinson JM. On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal Calorim. 2007;1:113–8.

    Article  Google Scholar 

  26. Zvetkov VL, Krastev RK, Samichkov VI. Rate equations in the study of the DSC kinetics of epoxy–amine reactions in an excess of epoxy. Thermochim Acta. 2008;478:17–27.

    Article  CAS  Google Scholar 

  27. Sherman LC, Zeigler RC, Verghese NE, Marks MJ. Structure–property relationships of controlled epoxy networks with quantified levels of excess epoxy etherification. J Polymer. 2008;49:1164–72.

    Article  CAS  Google Scholar 

  28. Macan J, Brnardic I, Ivancovic M, Mencer HJ. DSC study of cure kinetics of DGEBA-based epoxy resin with poly(oxypropilene) diamine. J Therm Anal Calorim. 2005;81:369–73.

    Article  CAS  Google Scholar 

  29. Sánchez-Cabezudo M, Masegosa RM, Salom C, Prolongo MG. Correlations between the morphology and the thermo-mechanical properties in poly(vinyl acetate)/epoxy thermosets. J Therm Anal Calorim. 2010;102:1025–33.

    Article  Google Scholar 

  30. Gude MR, Prolongo SG, Ureña A. Effect of the epoxy/amine stoichiometry on the properties of carbon nanotube/epoxy composites. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2056-x.

Download references

Acknowledgements

Financial support by Ministerio de Educación y Ciencia of Spain (MAT 2009-11083) and by Universidad Politécnica de Madrid-Investigation Groups Support is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Prolongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García del Cid, M.A., Prolongo, M.G., Salom, C. et al. The effect of stoichiometry on curing and properties of epoxy–clay nanocomposites. J Therm Anal Calorim 108, 741–749 (2012). https://doi.org/10.1007/s10973-012-2215-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2215-8

Keywords

Navigation