Skip to main content
Log in

Effects of inorganic nanofillers on the thermal degradation and UV-absorbance properties of polyvinyl acetate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) nanoparticles on the thermal and UV-absorbing properties of polyvinyl acetate (PVAc) were analyzed in this study. Nanoparticles of CaCO3 and CaSO4 were synthesized by in situ deposition technique. The size and shape of nanoparticles were recognized by X-ray diffraction and scanning electron microscope (SEM) analyses which confirmed that the particle was having a diameter of 25–33 nm. In this technique, the surface modification of nanoparticles was done by non-ionic polymeric surfactant. PVAc/CaCO3 and PVAc/CaSO4 nanocomposites film samples with an average thickness of 30 µm and in the mass ratio of nanoparticles (0–4% (w/w)) were prepared by solution mixing technique. Chemical, structural, and elemental characterizations of nanocomposites were done by, fourier transform infrared, SEM, and energy dispersive X-ray spectroscopy analyses, respectively. Thermal properties of pure polymer and nanocomposites were characterized through differential scanning calorimetric, thermogravimetric, and differential thermogravimetry techniques. The glass transition temperature of nanocomposites increases with increase in content of nanoparticles. It may be due to the interaction between inorganic and organic components. The thermogravimetric analysis results indicate that the thermal degradation temperatures of nanocomposites were enhanced upon the addition of nanosized inorganic fillers. The thermal results show that PVAc/CaSO4 nanocomposites were more thermally stable than PVAc/CaCO3 nanocomposites. The addition of nanoparticles affects degradation mechanism and consequently improves thermal stability of PVAc. The reduction of polymer chain mobility and the tendency of nanoparticles to eliminate free radicals were the principal effects responsible for these enhancements. The ultraviolet–visible (UV–Vis) absorbance spectra of PVAc and its nanocomposites films show that the intensity of absorbance increases with increasing filling content, suggesting that nanocomposites films have greater UV-shielding property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bhiwankar NN, Weiss RA. Melt intercalation/exfoliation of polystyrene-sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers. Polymer. 2006;47:6684–91.

    Article  CAS  Google Scholar 

  2. Schadler LS. Polymer-based and polymer-filled nanocomposites. New York: Wiley VCH; 2004.

    Google Scholar 

  3. Guar MS, Indolia AP. Thermally stimulated dielectric properties of polyvinyldenefluoride-zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.

    Article  Google Scholar 

  4. Viratyaporn W, Lehman RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103:267–73.

    Article  CAS  Google Scholar 

  5. Gaur MS, Rathore BS, Singh PK, Indolia A, Awasthi AM, Bhardwaj S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim. 2010;101:315–21.

    Article  CAS  Google Scholar 

  6. Vodnik VV, Vukovic JV, Nedeljkovic JM. Synthesis and Characterization of silver-poly(methyl methacrylate) nanocomposites. Colloid Polym Sci. 2009;287:847–51.

    Article  CAS  Google Scholar 

  7. Wang H, Peng X, Meng S, Zhong W, Du W, Du Q. Poly(methyl methacrylate)/silica/titania ternary nanocomposites with greatly improved thermal and ultraviolet-shielding properties. Polym Degrad Stab. 2006;91:1455–61.

    Article  CAS  Google Scholar 

  8. Shimpi NG, Mishra S. Synthesis of nanoparticles and its effect on properties of elestomeric nanocomposites. J Nanopart Res. 2010;12:2093–9.

    Article  CAS  Google Scholar 

  9. Rajkumar T, Vijayakumar CT, Sivasamy P, Sreedhar B, Wilkie CA. Thermal degradation studies on PMMA-HET acid based oligoesters blends. J Therm Anal Calorim. 2010;100:651–60.

    Article  CAS  Google Scholar 

  10. Arora A, Choudhary V, Sharma DK. Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites. J Polym Res. 2011;18:843–57.

    Article  CAS  Google Scholar 

  11. Zubitur M, Mugica A, Areizaga J, Cortazar M. Morphology and thermal properties relationship in poly(p-dioxanone)/layered double hydroxides nanocomposites. Colloid Polym Sci. 2010;288:809–18.

    Article  CAS  Google Scholar 

  12. Yang T, Brown RNC, Kempel LC, Kofinas P. Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency application. J Nanopart Res. 2010;12:2967–78.

    Article  CAS  Google Scholar 

  13. Stojanovic D, Oriovic A, Markovic S, Radmilovic V, Uskokovic PS, Aleksic R. Nanosilica/PMMA composites obtained by the modification of silica nanoparticles in a supercritical carbon dioxide-ethanol mixture. J Mater Sci. 2009;44:6223–32.

    Article  CAS  Google Scholar 

  14. Qian J, Zhang H, Cheng G, Huang Z, Dang S, Xu Y. Polypropylene wax (PPw)/silica hybrid by in situ non-aqueous sol-gel process for preparation of PP/silica nanocomposites. J Sol-Gel Sci Technol. 2010;56:300–9.

    Article  CAS  Google Scholar 

  15. Shi S, Zhang L, Li J. Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res. 2009;16:395–9.

    Article  CAS  Google Scholar 

  16. Sun D, Miyatake N, Sue H. Transparent PMMA/ZnO nanocomposites films based on colloidal quantum dots. Nanotech. 2007;18:215606.

    Article  Google Scholar 

  17. Zeng X, Kong X, Ge J, Liu H, Gao C, Shen Z, Chen J. Effective solution mixing method to fabricate highly transparent and optical functional organic-inorganic nanocomposites film. Ind Eng Chem Res. 2011;50:3253–8.

    Article  CAS  Google Scholar 

  18. Mukherji M, Bose S, Nayak GC, Das CK. A study on the properties of PC/LCP/MWCNT with and without compatibilizers. J Polym Res. 2010;17:265–72.

    Article  Google Scholar 

  19. Brydson JA. Plastics materials. London: Newnes-Butterworths; 1975.

    Google Scholar 

  20. Sivalingam G, Kartik R, Madras G. Blends of poly (e-caprolactone) and poly (vinyl acetate): mechanical properties and thermal degradation. Polym Deg Stab. 2004;84:345–52.

    Article  CAS  Google Scholar 

  21. Sivalingam G, Madras G. Thermal degradation of ternary blends of poly (e-caprolactone)/poly (vinyl acetate)/poly (vinyl chloride). J Appl Polym Sci. 2004;93:1378–84.

    Article  CAS  Google Scholar 

  22. Ochigbo SS, Luyt AS, Focke WW. Latex derived blends of poly(vinyl acetate) and natural rubber: thermal and mechanical properties. J Mater Sci. 2009;44:3248–54.

    Article  CAS  Google Scholar 

  23. Gajria AM, Dave V, Gross RA, McCarthy SP. Miscibility and biodegradability of blends of poly (lactic acid) and poly (vinyl acetate). Polymer. 1996;37:437–44.

    Article  CAS  Google Scholar 

  24. Prolongo MG, Arribas C, Salom C, Masegosa RM. Mechanical properties and morphology of epoxy/poly(vinyl acetate)/poly(4-vinyl phenol) brominated system. J Therm Anal Calorim. 2007;87:33–9.

    Article  CAS  Google Scholar 

  25. Rodriguez NLG, Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose. 2006;13:261–70.

    Article  Google Scholar 

  26. Amanuel S, Gaudette AN, Sternstein SS. Enthalpic relaxation of silica–polyvinyl acetate nanocomposites. J Polym Sci: Part B: Polym Phys. 2008;46:2733–40.

    Article  CAS  Google Scholar 

  27. Jung HM, Lee EM, Ji BC, Deng Y, Yun JD, Yeum JH. Poly(vinyl acetate)/poly(vinyl alcohol)/montmorillonite nanocomposite microspheres prepared by suspension polymerization and saponification. Colloid Polym Sci. 2007;285:705–10.

    Article  CAS  Google Scholar 

  28. Liu P, Gong K, Xiao P, Xiao M. Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposites. J Mater Chem. 2000;10:933–5.

    Article  CAS  Google Scholar 

  29. Mohsen-Nia M, Doulabi FSM. Synthesis and characterization of polyvinyl acetate/montmorillonite nanocomposite by in situ emulsion polymerization technique. Polym Bull. 2011;66:1255–65.

    Article  CAS  Google Scholar 

  30. Masturi, Abdullah M, Khairurrijal. High compressive strength of home waste and polyvinyl acetate composites containing silica nanoparticle filler. J Mater Cycles Waste Manag. 2011;13:225–231. doi:10.1007/s10163-011-0012-2.

  31. Pal MK, Singh B, Gautam J. Thermal stability and UV-shielding properties of polymethyl methacrylate and polystyrene modified with calcium carbonate nanoparticles. J Therm Anal Calorim. 2012;107:85–96. doi:10.1007/s10973-011-1686-3.

    Google Scholar 

  32. Mishra S, Mukherji A, Sharma DK. Nonisothermal crystallization modeling and simulation for polypropylene/nano CaSO4 composites with variation in nanosizes and wt% of loading. Polym-Plast Tech Eng. 2006;45:1191–8.

    Article  CAS  Google Scholar 

  33. Lysikov AI, Salanov AN, Moroz EM, Okunev AG. Preparation of pure monodisperse calcium carbonate particles. React Kinet Catal Lett. 2007;90:151–7.

    Article  CAS  Google Scholar 

  34. Rao KS, Anand S, Venkateswarlu P. Adsorption of cadmium from aqueous solution by Ficus religiosa leaf powder and characterization of loaded biosorbent. Clean–Soil Air Water. 2011;39:384–91.

    Google Scholar 

  35. Cullity BD. Elements of X-ray diffraction. Massachusetts: Addison-Wesley; 1965.

    Google Scholar 

  36. White WB. The carbonate minerals. In: Farmer VC, editor. The infrared spectra of minerals. London: Mineralogical Society; 1974.

    Google Scholar 

  37. Jikan SS, Ariff ZM, Ariffin A. Influence of filler content and processing parameter on the crystallization behaviour of PP/kaolin composites. J Therm Anal Calorim. 2010;102:1011–7.

    Article  CAS  Google Scholar 

  38. Avella M, Cosco S, Di Lorenzo ML, Di Pace E, Errico ME, Gentile G. Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur Polym J. 2006;42:1548–57.

    Article  CAS  Google Scholar 

  39. Peila R, Malucelli G, Priola A. Preparation and characterization of UV-cured acrylic nanocomposites based on modified organophilic montmorillonites. J Therm Anal Calorim. 2009;97:839–44.

    Article  CAS  Google Scholar 

  40. Chang JH, Seo B, Hwang DH. An exfoliation of organoclay in thermotropic liquid crystalline polyester nanocomposites. Polymer. 2002;43:2969–74.

    Article  CAS  Google Scholar 

  41. Sivalingam G, Karthik R, Madras G. Effect of metal oxides on thermal degradation of poly(vinyl acetate) and poly(vinyl chloride) and their blends. Ind Eng Chem Res. 2003;42:3647–53.

    Article  CAS  Google Scholar 

  42. Nagabhusana H, Nagaraju G, Nagabhusana BM, Shivakumara C, Chakradhar RPS. Hydrothermal synthesis and characterization of CaSO4 pseudomicrorods. Philos Mag Lett. 2010;90:289–98.

    Article  Google Scholar 

  43. Mikheeva OP, Sidorov AI. Optical nonlinearity of wide-bandgap semiconductor and insulator nanoparticles in the visible and near-infrared regions of the spectrum. Techn Phys. 2004;49:739–44.

    Article  CAS  Google Scholar 

  44. Elimat ZM, Zihlif AM, Avella M. Thermal and optical properties of poly(methyl methacrylate)/calcium carbonate nanocomposites. J Experi Nanosci. 2008;3:259–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research study was supported by the University Grant Commission, New Delhi (India). The authors gratefully acknowledge the facilities provided by the Department of Chemistry, Dr. B. R. Ambedkar University, Agra, India to carry out this study successfully. The authors thank the Director, STIC (SAIF) Kochi, and IIT Chennai (SAIF) Chennai for providing FT-IR, XRD, DSC, TG/DTG, SEM, and EDS characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaiswar Gautam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, M.K., Gautam, J. Effects of inorganic nanofillers on the thermal degradation and UV-absorbance properties of polyvinyl acetate. J Therm Anal Calorim 111, 689–701 (2013). https://doi.org/10.1007/s10973-011-2153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2153-x

Keywords

Navigation