Skip to main content
Log in

Loading of praziquantel in the crystal lattice of solid lipid nanoparticles

Studies by DSC and SAXS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Praziquantel (PZQ) is the drug of choice for oral treatment of schistosomiasis and other fluke infections that affect humans. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. In this article, solid lipid nanoparticles loaded with PZQ (PZQ-SLN) were prepared by a modified oil-in-water microemulsion method selecting stearic acid as lipid phase after solubility screening studies. The mean particle size (Z-Ave) and zeta potential (ZP) were 500 nm and −34.0 mV, respectively. Morphology and shape of PZQ-SLN were analysed by scanning electron microscopy revealing the presence of spherical particles with smooth surface. Differential scanning calorimetry suggested that SLN comprised a less ordered arrangement of crystals and the drug was molecularly dispersed in the lipid matrix. No supercooled melts were detected. The entrapment efficiency (EE) and loading capacity of PZQ, determined by high performance liquid chromatography, were 99.06 ± 0.3 and 17.48 ± 0.05, respectively. Effective incorporation of PZQ into the particles was confirmed by small angle X-ray scattering revealing the presence of a lipid lamellar structure. Stability parameters of PZQ-SLN stored at room temperature (25 °C) and at 4 °C were checked by analysing Z-Ave, ZP and the EE for a period of 60 days. Results showed a relatively long-term physical stability after storage at 4 °C, without drug expulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reynolds JEF, Parfitt K, Parsons AV, Swetman SC. Martindale the extra pharmacopoeia. 30th ed. London: The Pharmaceutical Press; 1993.

    Google Scholar 

  2. Ali BH. Short review of some pharmacological, therapeutic and toxicological properties of praziquantel in man and animals. Pak J Pharm Sci. 2006;19:170–5.

    CAS  Google Scholar 

  3. Mourão SC, Costa PI, Salgado HRN, Gremião MPD. Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm. 2005;295:157–62.

    Article  Google Scholar 

  4. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:62–76.

    Article  CAS  Google Scholar 

  5. Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008;34:1394–405.

    Article  CAS  Google Scholar 

  6. Souto EB, Müller RH. Lipid nanoparticles—Effect on bioavailability and pharmacokinetics changes. In: Schäfer-Korting M, editor. Handbook of experimental pharmacology—Novel drug delivery approaches. vol. 197. Heidelberg, Berlin, Germany: Springer Verlag; 2009 (chapter 4). pp. 115–142.

  7. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  CAS  Google Scholar 

  8. Souto EB, Müller RH. Lipid nanoparticles (SLN and NLC) for drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S, editors. Nanoparticles for pharmaceutical applications. American Scientific Publishers; 2007 (chapter 5). pp. 103–122.

  9. Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Samon Calcitonin by mucoadhesive solid lipid nanoparticles (SLN). J Biomed Nanotechnol. 2009;5:76–83.

    Article  CAS  Google Scholar 

  10. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    Article  CAS  Google Scholar 

  11. Souto EB, Anselmi C, Centini M, Müller RH. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int J Pharm. 2005;295:261–8.

    Article  CAS  Google Scholar 

  12. Souto EB, Muller RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22:501–10.

    Article  CAS  Google Scholar 

  13. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–300.

    Article  CAS  Google Scholar 

  14. Schwarz C, Mehnert W, Lucks JS, Müller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30:83–96.

    Article  CAS  Google Scholar 

  15. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Factorial design study of ultrasound-engineered NLC for ocular delivery of flurbiprofen, Colloids Surf B Biointerfaces. 2010;81:412–21.

    Google Scholar 

  16. Bunjes H, Siekmann B, Westesen K. Emulsions of super-cooled melts—a novel drug delivery system. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic Publishers; 1998. p. 175–204.

    Google Scholar 

  17. Ali H, El-Sayed K, Sylvester PW, Nazzal S. Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf B Biointerfaces. 2010;77:286–97.

    Article  CAS  Google Scholar 

  18. Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm. 1995;115:129–31.

    Article  CAS  Google Scholar 

  19. Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199:167–77.

    Article  CAS  Google Scholar 

  20. Doktorovova S, Araujo J, Garcia ML, Rakovsky E, Souto EB, Doktorovova S, Araujo J, Garcia ML, Rakovsky E, Souto EB. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B Biointerfaces. 2010;75:538–42.

    Article  CAS  Google Scholar 

  21. Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42:11–8.

    Article  CAS  Google Scholar 

  22. Chen H, Chang X, Du D, Liu W, Liu J, Weng T, Yang Y, Xu H, Yang X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110:296–306.

    Article  CAS  Google Scholar 

  23. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95:627–38.

    Article  CAS  Google Scholar 

  24. Kuntsche J, Westesen K, Drechsler M, Koch MH, Bunjes H. Supercooled smectic nanoparticles—a potential novel carrier system for poorly water soluble drugs. Pharm Res. 2004;21:1836–45.

    Article  Google Scholar 

  25. Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47:125–32.

    Article  CAS  Google Scholar 

  26. Bunjes H, Westesen K, Koch MHJ. Crystallinization tendency and polymorphic transitions triglyceride nanoparticles. Int J Pharm. 1996;129:159–73.

    Article  CAS  Google Scholar 

  27. Lukowski G, Kasbohm J, Pflegel P, Illing A, Wulff H. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int J Pharm. 2000;196:201–5.

    Article  CAS  Google Scholar 

  28. Maruyama T, Nakajima M, Ichikawa S, Sano Y, Nabetani H, Furusaki S, Seki M. Small angle X-Ray scattering analysis of stearic acid modified lipase. Biosci Biotechnol Biochem. 2001;65:1003–6.

    Article  CAS  Google Scholar 

  29. Haskell RJ, Shifflett JR, Elzinga PA. Particle-sizing technologies for submicron emulsions. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic Publishers; 1998. p. 21–98.

    Google Scholar 

  30. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int J Pharm. 1998;168:221–9.

    Article  CAS  Google Scholar 

  31. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6:753–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. Marcelo Ornaghi Orlandi and Tarek Fernandes for SEM analysis. Laboratorio Nacional de Luz Sincrotron (LNLS) is acknowledged and especially SAXS’ staff support. Financial support provided by FAPESP (Fundação de Amparo a Pesquisa), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for Ana Luiza R. de Souza and by FCT (Fundação para a Ciência e Tecnologia) for Tatiana Andreani under the reference SFRH/BD/60640/2009 are acknowledged. The authors also acknowledge FCT under the reference PTDC/SAU-FAR/113100/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, A.L.R., Andreani, T., Nunes, F.M. et al. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles. J Therm Anal Calorim 108, 353–360 (2012). https://doi.org/10.1007/s10973-011-1871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1871-4

Keywords

Navigation