Skip to main content
Log in

Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study focuses on the physicochemical characterization of lipid materials useful for the production of the so-called solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The chosen lipids were Dynasan®114 (glyceril trimyristate) and Dynasan®118 (glyceril tristearate) as solid lipids (SL), melting temperature above 80 °C, and Miglyol®812 (caprylic/capric triglyceride) and Miglyol®840 (propylene glycol dicaprylate/dicaprate) as liquid lipids (LL), crystallizing below −15 °C. Raw lipids (pure or SL:LL mixtures) were analyzed by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and Polarized Light Microscopy (PLM), before and after tempering at 80 °C for 1 h. The selected SL:LL combination was 70% (Dynasan®114 and 118) and 30% (Miglyol®812 and 840) for the production of SLN and NLC by high-pressure homogenization (HPH), respectively. Particles with a mean size of 200 nm (polydispersity index <0.329) and zeta potential of −15 mV were obtained, and their long-term stability was confirmed for 3 months of storage at 7 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007. doi:10.1016/j.nano.2006.11.008.

  2. Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011. doi:10.1016/j.ejps.2010.10.002.

  3. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces. 2010. doi:10.1016/j.colsurfb.2010.07.029.

  4. Heney M, Alipour M, Vergidis D, Omri A, Mugabe C, Th’ng J, Suntres Z. Effectiveness of liposomal paclitaxel against MCF-7 breast cancer cells. Can J Physiol Pharmacol. 2010. doi:10.1139/y10-097.

  5. Wang J, Liu W, Tu Q, Song N, Zhang Y, Nie N. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules. 2011. doi:10.1021/bm101206g.

  6. Barata TS, Shaunak S, Teo I, Zloh M, Brocchini S. Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers. J Mol Model. 2010. doi:10.1007/s00894-010-0907-1.

  7. Rawat MK, Jain A, Singh S. In vivo and cytotoxicity evaluation of repaglinide-loaded binary solid lipid nanoparticles after oral administration to rats. J Pharm Sci. 2011. doi:10.1002/jps.22454.

  8. Souto EB, Muller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010. doi:10.1007/978-3-642-00477-3_4.

  9. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  CAS  Google Scholar 

  10. De Oliveira GG, Ferraz HG, Severino P, Souto EB. Analysis of phase transition and dehydration processes of nevirapine. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1424-x.

  11. Yoshid MI, Oliveira MA, Gomes ECL, Mussel WN, Castro WV, Soares CDV. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1510-0.

  12. Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mader K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release. 2004. doi:10.1016/j.jconrel.2003.11.012.

  13. Bondi ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond). 2009. doi:10.2217/nnm.09.67.

  14. Souto EB, Muller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul. 2006. doi:10.1080/02652040500435295.

  15. Ali H, Shirode AB, Sylvester PW, Nazzal S. Preparation, characterization, and anticancer effects of simvastatin-tocotrienol lipid nanoparticles. Int J Pharm. 2010. doi:10.1016/j.ijpharm.2010.01.018.

  16. Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004. doi:10.1016/j.addr.2003.12.002.

  17. Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008. doi:10.1080/03639040802130061.

  18. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    Article  CAS  Google Scholar 

  19. Lippacher A, Muller RH, Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214:9–12.

    Article  CAS  Google Scholar 

  20. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242:121–8.

    Article  CAS  Google Scholar 

  21. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  CAS  Google Scholar 

  22. Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006. doi:10.1080/02652040600612439.

  23. Potta SG, Minemi S, Nukala RK, Peinado C, Lamprou DA, Urquhart A, Douroumis D. Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility. J Microencapsul. 2011. doi:10.3109/02652048.2010.529948.

  24. Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H. A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem. 2008. doi:10.1021/jf8013926.

  25. Rica RA, Jiménez ML, Delgado AV. Dynamic mobility of rodlike goethite particles. Langmuir. 2009. doi:10.1021/la9013976.

  26. Jenning V, Thunemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199:167–77.

    Article  CAS  Google Scholar 

  27. Mezzena M, Scalia S, Young PM, Traini D. Solid lipid budesonide microparticles for controlled release inhalation therapy. AAPS J. 2009. doi:10.1208/s12248-009-9148-6.

  28. Kim JK, Park JS, Kim CK. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. Int J Pharm. 2010. doi:10.1016/j.ijpharm.2009.09.008.

  29. Attama AA, Muller-Goymann CC. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid. Int J Pharm. 2007. doi:10.1016/j.ijpharm.2006.10.032.

  30. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010. doi:10.1002/jps.21944.

Download references

Acknowledgements

The authors wish to acknowledge the sponsorship of the (FAPESP) Fundação de Amparo e Pesquisa and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors are also thankful to Fundação para a Ciência e Tecnologia do Ministério da Ciência e Tecnologia, under the reference PTDC/SAU-FAR/113100/2009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliana B. Souto or Maria H. A. Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severino, P., Pinho, S.C., Souto, E.B. et al. Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. J Therm Anal Calorim 108, 101–108 (2012). https://doi.org/10.1007/s10973-011-1613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1613-7

Keywords

Navigation