Skip to main content
Log in

Investigation of temperature dependent electrical and impedance characteristics of bulk Zn0.95Co0.05O

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zn0.95Co0.05O was synthesized by sol-gel method and then Zn0.95Co0.05O pellet was prepared to investigate its structural, morphological, electrical, and impedance properties. For this purpose, the pellet was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and impedance measurement techniques. SEM images showed that the particle sizes of Zn0.95Co0.05O were between 1 and 100 μm. The frequency and temperature dependence of capacitance, conductance, and complex impedance characteristics of Zn0.95Co0.05O in a pellet form were investigated within the temperature range of 300–500 K and frequency range of 1 kHz–1.5 MHz. The radii of the semicircular arc reduced with increasing temperature revealing that the Zn0.95Co0.05O shows negative temperature coefficient of resistance as in semiconductors. The impedance analysis revealed the contribution of grains and grain boundaries to the conduction and polarization processes.

Highlights

  • Zn0.95Co0.05O was synthesized by sol-gel technique and then Zn0.95Co0.05O pellet form was prepared.

  • Morphological and structural properties of the Zn0.95Co0.05O were examined by SEM and XRD.

  • Impedance and electrical properties of the Zn0.95Co0.05O were examined within the large range of temperature and frequencies.

  • Relaxation times were obtained at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Könenkamp R, Boedecker K, Lux-Steiner MC, Poschenrieder M, Zenia F, Levy-Clement C, Wagner S (2000) Thin film semiconductor deposition on free-standing ZnO columns. Appl Phys Lett 77:2575–2577. https://doi.org/10.1063/1.1319187

    Article  Google Scholar 

  2. Lee JH, Park BO (2003) Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method. Thin Solid Films 426:94–99. https://doi.org/10.1016/S0040-6090(03)00014-2

    Article  CAS  Google Scholar 

  3. Virt IS, Hadzaman IV, Bilyk I, Rudyi IO, Kurilo IV, Frugynskyi MS, Potera P (2010) Properties of ZnO and ZnMnO thin films obtained by pulsed laser ablation. Acta Phys Pol A 117:34–37. https://doi.org/10.12693/APhysPolA.117.34

    Article  CAS  Google Scholar 

  4. Wisz G, Virt I, Sagan P, Potera P, Yavorskyi R (2017) Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Method. Nanoscale Res Lett 12:0–6. https://doi.org/10.1186/s11671-017-2033-9

    Article  CAS  Google Scholar 

  5. Singh S, Kaur H, Pathak D, Bedi RK (2011) Zinc oxide nanostructures as transparent window layer for photovoltaic application. Dig J Nanomater Biostruct 6:689–698

    Google Scholar 

  6. Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, Yang Z (2005) Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sens Actuators, B Chem 110:370–376. https://doi.org/10.1016/j.snb.2005.02.017

    Article  CAS  Google Scholar 

  7. Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861–3877. https://doi.org/10.1039/c1ee01873f

    Article  CAS  Google Scholar 

  8. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B Environ 101:382–387. https://doi.org/10.1016/j.apcatb.2010.10.007

    Article  CAS  Google Scholar 

  9. Gordon T, Kopel M, Grinblat J, Banin E, Margel S (2012) New synthesis, characterization and antibacterial properties of porous ZnO and C-ZnO micrometre-sized particles of narrow size distribution. J Mater Chem 22:3614–3623. https://doi.org/10.1039/c2jm15510a

    Article  CAS  Google Scholar 

  10. Cao P, Bai Y (2013) Structural and Optical Properties of ZnCoO Thin Film Prepared by Electrodeposition. Adv Mat Res 781–784 323–326. https://doi.org/10.4028/www.scientific.net/AMR.781-784.323

  11. Ou SL, Liu HR, Wang SY, Wuu DS (2016) Co-doped ZnO dilute magnetic semiconductor thin films by pulsed laser deposition: Excellent transmittance, low resistivity and high mobility. J Alloy Compd 663:107–115. https://doi.org/10.1016/j.jallcom.2015.12.101

    Article  CAS  Google Scholar 

  12. Zhou H, Knies C, Hofmann DM, Stehr J, Volbers N, Meyer BK, Chen L, Klar P, Heimbrodt W (2006) Optical and magnetic properties of c-oriented ZnCoO films. Phys Status Solidi Appl Mater Sci 203:2756–2759. https://doi.org/10.1002/pssa.200669560

    Article  CAS  Google Scholar 

  13. Bacaksiz E, Aksu S, Basol BM, Altunbaş M, Parlak M, Yanmaz E (2008) Structural, optical and magnetic properties of Zn1 - xCoxO thin films prepared by spray pyrolysis. Thin Solid Films 516:7899–7902. https://doi.org/10.1016/j.tsf.2008.03.042

    Article  CAS  Google Scholar 

  14. Kayani ZN, Iqbal M, Riaz S, Zia R, Naseem S (2015) Fabrication and properties of zinc oxide thin film prepared by sol-gel dip coating method. Mater Sci Pol 33:515–520. https://doi.org/10.1515/msp-2015-0085

    Article  CAS  Google Scholar 

  15. Sati P, Deparis C, Morhain C, Schäfer S, Stepanov A (2007) Antiferromagnetic interactions in single crystalline Zn1-xCoxO thin films. Phys Rev Lett 98:1–4. https://doi.org/10.1103/PhysRevLett.98.137204

    Article  CAS  Google Scholar 

  16. Potera P, Virt I, Wisz G, Cebulski J (2017) Optical properties of ZnCoO layers obtained by PLD method. Mater Sci-Poland 35:878–884. https://doi.org/10.1186/s11671-017-2033-9

    Article  CAS  Google Scholar 

  17. Cho YC, Kim SJ, Lee S, Kim SJ, Cho CR, Nahm HH, Park CH, Jeong IK, Park S, Hong TE, Kuroda S, Jeong SY (2009) Reversible ferromagnetic spin ordering governed by hydrogen in Co-doped ZnO semiconductor. Appl Phys Lett 95:2–5. https://doi.org/10.1063/1.3257733

    Article  CAS  Google Scholar 

  18. Dole BN, Mote VD, Huse VR, Purushotham Y, Lande MK, Jadhav KM, Shah SS (2011) Structural studies of Mn doped ZnO nanoparticles. Curr Appl Phys 11:762–766. https://doi.org/10.1016/j.cap.2010.11.050

    Article  Google Scholar 

  19. Lobo LS, Ruban Kumar A (2019) Structural and electrical properties of ZnCo2O4 spinel synthesized by sol-gel combustion method. J Non Cryst Solids 505:301–309. https://doi.org/10.1016/j.jnoncrysol.2018.11.004

    Article  CAS  Google Scholar 

  20. Al Armouzi N, Manoua M, El Hallani G, Hilal HS, Liba A, Kouider N, Mabrouki M (2021) Effects of Sn Doping on Properties of Multilayered ZnO Films Deposited by Spin Coating/Sol–Gel Method. Jom 73:411–419. https://doi.org/10.1007/s11837-020-04492-y

    Article  CAS  Google Scholar 

  21. Onodera A, Tamaki N, Kawamura Y, Sawada T, Yamashita H (1996) Dielectric activity and ferroelectricity in piezoelectric semiconductor Li-doped ZnO. Jpn J Appl Phys, Part 1 Regul Pap Short Notes Rev Pap 35:5160–5162. https://doi.org/10.1143/jjap.35.5160

    Article  CAS  Google Scholar 

  22. Yang YC, Zhong CF, Wang XH, He B, Wei SQ, Zeng F, Pan F (2008) Room temperature multiferroic behavior of Cr-doped ZnO films. J Appl Phys 104:1–5. https://doi.org/10.1063/1.2978221

    Article  CAS  Google Scholar 

  23. Dhananjay KrupanidhiSB (2006) Dielectric properties of c-axis oriented Zn1-xMgxO thin films grown by multimagnetron sputtering. Appl Phys Lett 89:1–4. https://doi.org/10.1063/1.2266891

    Article  CAS  Google Scholar 

  24. Goel S, Sinha N, Yadav H, Joseph AJ, Kumar B (2017) Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater Chem Phys 202:56–64. https://doi.org/10.1016/j.matchemphys.2017.08.067

    Article  CAS  Google Scholar 

  25. Srinet G, Kumar R, Sajal V (2014) High Tc ferroelectricity in Ba-doped ZnO nanoparticles. Mater Lett 126:274–277. https://doi.org/10.1016/j.matlet.2014.04.054

    Article  CAS  Google Scholar 

  26. Sato K, Katayama-Yoshida H (2000) Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn J Appl Phys Part 2 Lett 39. https://doi.org/10.1143/jjap.39.l555

  27. Gacic M, Jakob G, Herbort C, Adrian H, Tietze T, Brück S, Goering E (2007) Magnetism of Co-doped ZnO thin films. Phys Rev B - Condens Matter Mater Phys 75:1–8. https://doi.org/10.1103/PhysRevB.75.205206

    Article  CAS  Google Scholar 

  28. Arshad M, Azam A, Ahmed AS, Mollah S, Naqvi AH (2011) Tailoring of Structural and Optical Properties of ZnO Nanoparticles by Co Doping Asian J Chem 23:5577–5580. https://doi.org/10.4028/www.scientific.net/MSF.1010.346

  29. Bhakta N, Chakrabarti PK (2019) Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles. J Magn Magn Mater 485:419–426. https://doi.org/10.1016/j.jmmm.2019.03.106

    Article  CAS  Google Scholar 

  30. Gandhi V, Ganesan R, Abdulrahman Syedahamed HH, Thaiyan M (2014) Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys Chem C 118:9717–9725. https://doi.org/10.1021/jp411848t

    Article  CAS  Google Scholar 

  31. Tarwal NL, Gurav KV, Prem Kumar T, Jeong YK, Shim HS, Kim IY, Kim JH, Jang JH, Patil PS (2014) Structure, X-ray photoelectron spectroscopy and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. J Anal Appl Pyrolysis 106:26–32. https://doi.org/10.1016/j.jaap.2013.12.005

    Article  CAS  Google Scholar 

  32. Kulandaisamy AJ, Karthek C, Shankar P, Mani, Ganesh K, Rayappan JBB (2016) Tuning selectivity through cobalt doping in spray pyrolysis deposited ZnO thin films. Ceram Int 42:1408–1415. https://doi.org/10.1016/j.ceramint.2015.09.084

    Article  CAS  Google Scholar 

  33. Ganbavle VV, Patil SK, Inamdar SI, Shinde SS, Rajpure KY (2014) Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO thin films. Sens Actuators, A Phys 216:328–334. https://doi.org/10.1016/j.sna.2014.06.009

    Article  CAS  Google Scholar 

  34. Mani GK, Rayappan JBB (2015) A highly selective and wide range ammonia sensor - Nanostructured ZnO:Co thin film. Mater Sci Eng B Solid-State Mater Adv Technol 191:41–50. https://doi.org/10.1016/j.mseb.2014.10.007

    Article  CAS  Google Scholar 

  35. Su YL, Zhang QY, Zhou N, Ma CY, Liu XZ, Zhao JJ (2017) Study on Co-doped ZnO comparatively by first-principles calculations and relevant experiments. Solid State Commun 250:123–128. https://doi.org/10.1016/j.ssc.2016.12.002

    Article  CAS  Google Scholar 

  36. Typek J, Guskos N, Zolnierkiewicz G, Sibera D, Narkiewicz U (2017) Magnetic resonance study of co-doped ZnO nanomaterials: a case of high doping. Rev Adv Mater Sci 50:76–87

    CAS  Google Scholar 

  37. Tortosa M, Mollar M, Mari B, Lloret F (2008) Optical and magnetic properties of ZnCoO thin films synthesized by electrodeposition. J Appl Phys 101:03390. https://doi.org/10.1063/1.2952548

    Article  CAS  Google Scholar 

  38. Wolska E, Łukasiewicz M, Fidelus JD, Łojkowski W, Guziewicz E, Godlewski M (2009) Optical properties of ZnCoO films and nanopowders. Acta Phys Pol A 116:918–920. https://doi.org/10.12693/APhysPolA.116.918

    Article  CAS  Google Scholar 

  39. Santos DAA, Rocha ADP, Macêdo MA (2008) Rietveld refinement of transition metal doped ZnO. Powder Diffr 23:S36–S41. https://doi.org/10.1154/1.2903739

    Article  CAS  Google Scholar 

  40. Srivastava V, Gusain D, Sharma YC (2013) Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram Int 39:9803–9808. https://doi.org/10.1016/j.ceramint.2013.04.110

    Article  CAS  Google Scholar 

  41. Cullity BD, Stock SR (2001) Elements of x-ray diffraction. Cullity, BD, & Stock, SR. Elements of X-ray Diffraction, 3rd ed. Prentice-Hall. New York.

  42. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono LK, Roldan Cuenya B, Heinrich H (2010) Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256:1895–1907. https://doi.org/10.1016/j.apsusc.2009.10.032

    Article  CAS  Google Scholar 

  43. Devi KN, Singh WJ, Singh KJ (2017) Effect of Co doping on the structural and optical properties of ZnO nanospindles synthesized by co-precipitation method. J Mater Sci Mater Electron 28:8211–8217. https://doi.org/10.1007/s10854-017-6532-3

    Article  CAS  Google Scholar 

  44. Singh A, Vishwakarma HL (2016) Structural, morphological and electroluminescence studies of Zno:Co nanophosphor. Appl Phys A Mater Sci Process 122:1–11. https://doi.org/10.1007/s00339-016-0298-y

    Article  CAS  Google Scholar 

  45. Baghdad R, Lemée N, Lamura G, Zeinert A, Hadj-Zoubir N, Bousmaha M, Bezzerrouk MA, Bouyanfif H, Allouche B, Zellama K (2017) Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method. Superlattices Microstruct 104:553–569. https://doi.org/10.1016/j.spmi.2016.11.069

    Article  CAS  Google Scholar 

  46. Nicollian EH, Goetzber A (1967) Si-SiO2 Interface - electrical properties as determined by metal-insulator-siliconconductance technique. Bcl] Syst Tech J 46:1055–1133

    Article  CAS  Google Scholar 

  47. Birkan Selçuk A, Tuǧluoǧlu N, Karadeniz S, Bilge Ocak S (2007) Analysis of frequency-dependent series resistance and interface states of In/SiO2/p-Si (MIS) structures. Phys B Condens Matter 400:149–154. https://doi.org/10.1016/j.physb.2007.06.031

    Article  CAS  Google Scholar 

  48. Kumar A, Singh BP, Choudhary RNP, Thakur AK (2005) A.C. impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3. J Alloy Compd 394:292–302. https://doi.org/10.1016/j.jallcom.2004.11.012

    Article  CAS  Google Scholar 

  49. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Complex impedance studies on a layered perovskite ceramic oxide - NaNdTiO4. Mater Sci Eng B Solid-State Mater Adv Technol 116:7–13. https://doi.org/10.1016/j.mseb.2004.08.009

    Article  CAS  Google Scholar 

  50. El-Gendy YA, Yahia IS, Yakuphanoglu F (2012) Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy. Mater Res Bull 47:3397–3402. https://doi.org/10.1016/j.materresbull.2012.07.017

    Article  CAS  Google Scholar 

  51. Ishihara S, Hase H, Okachi T, Naito H (2011) Determination of charge carrier mobility in tris(8-hydroxy-quinolinato) aluminum by means of impedance spectroscopy measurements. Org Electron 12:1364–1369. https://doi.org/10.1016/j.orgel.2011.05.004

    Article  CAS  Google Scholar 

  52. Knapp E, Ruhstaller B (2011) Numerical impedance analysis for organic semiconductors with exponential distribution of localized states Appl Phys Lett 99:093304. https://doi.org/10.1063/1.3633109

    Article  CAS  Google Scholar 

  53. Alim MA, Seitz MA, Hirthe RW (1988) Complex plane analysis of trapping phenomena in zinc oxide based varistor grain boundaries. J Appl Phys 63:2337–2345. https://doi.org/10.1063/1.341176

    Article  CAS  Google Scholar 

  54. Batra AK, Currie JR, Alim MA, Aggarwal MD (2009) Impedance response of polycrystalline tungsten oxide. J Phys Chem Solids 70:1142–1145. https://doi.org/10.1016/j.jpcs.2009.06.024

    Article  CAS  Google Scholar 

  55. Ben Bechir M, Ben Rhaiem A (2021) The lithium-ion battery: study of alternative current conduction mechanisms on the Li3PO4 - based solid electrolyte. Phys E Low-Dimensional Syst Nanostruct 130:114686. https://doi.org/10.1016/j.physe.2021.114686

    Article  CAS  Google Scholar 

  56. Matsumura M, Hirose Y (2001) Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD). Appl Surf Sci 175–176:740–745. https://doi.org/10.1016/S0169-4332(01)00086-1

  57. Kumar N, Chand S (2020) Analysis of rectifying metal-semiconductor interface using impedance spectroscopy at low temperatures. Phys B Condens Matter 599:412547. https://doi.org/10.1016/j.physb.2020.412547

    Article  CAS  Google Scholar 

  58. Sharma V, Kaur R, Singh M, Selvamani R, Gupta AM, Tiwari VS, Karnal AK, Singh A (2018) Conductivity relaxation and oxygen vacancies-related electron hopping mechanisim in Pb1-xLax/2Smx/2Ti1-xFexO solid solutions. J Asian Ceram Soc 6(3):222–231. https://doi.org/10.1080/21870764.2018.1489941

    Article  Google Scholar 

  59. Trabelsi H, Behar M, Dhahri E, Graça MPF, Valente MA, Khirouni K (2018) Structure, Raman, dielectric behaviour and electrical conduction mechanism of strontium titanate. Phys E: Low-dimensional Syst Nanostruct 99:75–81. https://doi.org/10.1016/j.physe.2018.01.019

    Article  CAS  Google Scholar 

  60. Sahoo PS, Panigrahi A, Patri SK (2010) Choudhary RNP, Impedance and modulus spectroscopy studies of Ba4SrSmTi3V7O30 ceramics. Mater Sci-Pol 28:763–772. https://doi.org/10.1007/s12034-010-0018-8

    Article  CAS  Google Scholar 

  61. Pu Y, Dong Z, Zhang P, Wu Y, Zhao J, Luo Y (2016) Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics. J Alloy Compd 672:64–71. https://doi.org/10.1016/j.jallcom.2016.02.137

    Article  CAS  Google Scholar 

  62. El-Zaidia EFM, El-Shazly EA, Ali HAM (2020) Estimation of Electrical Conductivity and Impedance Spectroscopic of Bulk CdIn2Se4 Chalcogenide. J Inorg Organomet Polym Mater 30:2979–2986. https://doi.org/10.1007/s10904-020-01454-4

    Article  CAS  Google Scholar 

  63. Salame P, Drai R, Prakash O, Kulkarni AR (2014) IBLC effect leading to colossal dielectric constant in layered structured Eu2CuO4 ceramic. Ceram Int 40:4491–4498. https://doi.org/10.1016/j.ceramint.2013.08.123

    Article  CAS  Google Scholar 

  64. El-Nahass MM, Attia AA, Ali HAM, Salem GF, Ismail MI (2018) Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films. J Electron Mater 47:2739–2745. https://doi.org/10.1007/s11664-018-6126-8

    Article  CAS  Google Scholar 

  65. Wang ZY, Chen TG (1998) Evidence for the weak domain wall pinning due to oxygen vacancies in SrBi2Ta2O9 from internal friction measurements. Phys Status Solidi Appl Res 167:3–4. https://doi.org/10.1002/(sici)1521-396x(199805)167:1<r3::aid-pssa99993>3.0.co;2-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Projects foundation of Gazi University (BAP 05/2020-20).

Author information

Authors and Affiliations

Authors

Contributions

NT: Investigation, experiment, formal analysis, visualization, writing—original draft, PO: Investigation, formal analysis, visualization, writing —original draft, YD: Investigation, experiment, formal analysis, visualization, writing—original draft, AS: Investigation, formal analysis, visualization, writing—original draft, AOÇ: Formal analysis, experimental measurement, ŞÇ: Supervision, resources, investigation, writing—original draft, visualization, writing-review & editing, HK: Supervision, resources, investigation, writing—original draft, visualization, writing-review & editing, NT: Project administration, supervision, investigation, writing—original draft, visualization, writing-review & editing.

Corresponding author

Correspondence to Pınar Oruç.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, N., Oruç, P., Demirölmez, Y. et al. Investigation of temperature dependent electrical and impedance characteristics of bulk Zn0.95Co0.05O. J Sol-Gel Sci Technol 100, 147–159 (2021). https://doi.org/10.1007/s10971-021-05623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05623-w

Keywords

Navigation