Skip to main content

Advertisement

Log in

Magnetic materials for photocatalytic applications—a review

  • Review Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Photocatalysts have been widely applied in the degradation of organic compounds using visible and ultraviolet radiation. Different synthesis approaches have been developed and optimized to produce efficient, eco-friendly, and inexpensive materials to photo-treat water samples contaminated with dyes, pigments, pesticides, and other organic pollutants. Over the last two decades magnetic materials have emerged as a potential alternative to facilitate catalyst isolation in heterogeneously catalyzed liquid-phase reactions. In this review, we focus on the discussion of several studies including the main synthesis processes and new protocol modifications for the fabrication of magnetic photocatalysts, and their impact on the catalyst morphology, efficiency, and recycling. Emphasis is given on the discussion of the synthesis strategies over last decade to produce photoactive catalysts including single-phase catalysts, composites, Multifunctional metal–organic framework materials, binary and ternary core–shell materials, and yolk–shell photocatalysts.

Highlights

  • A review on magnetic materials for photocatalysis is given.

  • Emphasis is given on sol–gel preparation methods utilized for the fabrication of magnetic photocatalysts.

  • Discussion on different material types of magnetic photocatalysts is presented.

  • Magnetic separation properties and efficiency are discussed based on the material structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bahri A (1999) Agricultural reuse of wastewater and global water management. Water Sci Technol 40(4-5):339–346

    CAS  Google Scholar 

  2. Ding H, Wei JS, Zhong N, Gao QY, Xiong HM (2017) Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging. Langmuir 33(44):12635–12642

    CAS  Google Scholar 

  3. Ye L (2016) BiOX (X = Cl, Br, and I) photocatalysts. In: Semiconductor photocatalysis: materials, mechanisms and applications, p 273.

  4. Li X, Yu J, Wageh S, Al‐Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12(48):6640–6696

    CAS  Google Scholar 

  5. Liu Y, Li Z, Green M, Just M, Li YY, Chen X (2017) Titanium dioxide nanomaterials for photocatalysis. J Phys D: Appl Phys 50(19):193003

    Google Scholar 

  6. Huang Z, Sun F, Zhang Y et al. (2011) Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces. J Colloid Interface Sci 356(2):783–789

    CAS  Google Scholar 

  7. Yayapao O, Thongtem T, Phuruangrat A, Thongtem S (2013) Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Mater Lett 90:83–86

    CAS  Google Scholar 

  8. Seifollahi Bazarjani M, Hojamberdiev M, Morita K et al. (2013) Visible light photocatalysis with c-WO3–x/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J Am Chem Soc 135(11):4467–4475

    CAS  Google Scholar 

  9. Li Z, Meng X, Zhang Z (2018) Recent development on MoS2-based photocatalysis: a review. J Photochem Photobiol C: Photochem Rev 35:39–55

    CAS  Google Scholar 

  10. Jin Y, Ou L, Yang H, Fu H (2017) Visible-light-mediated aerobic oxidation of N-alkylpyridinium salts under organic photocatalysis. J Am Chem Soc 139(40):14237–14243

    CAS  Google Scholar 

  11. Kumamoto K, Tsuchibashi K, Pramata AD, Yuasa M, Shimanoe K, Kida T (2017) Visible Light-driven photoenergy storage and photocatalysis using polyoxometallates coupled with a Ru complex. J Phys Chem C 121(25):13515–13523

    CAS  Google Scholar 

  12. Costa-Coquelard C, Sorgues S, Ruhlmann L (2010) Photocatalysis with polyoxometalates associated to porphyrins under visible light: an application of charge transfer in electrostatic complexes. J Phys Chem A 114(22):6394–6400

    CAS  Google Scholar 

  13. Zhu YY, Lan G, Fan Y, Veroneau SS, Song Y, Micheroni D, Lin W (2018) Merging photoredox and organometallic catalysts in a metal–organic framework significantly boosts photocatalytic activities. Angew Chem 130(43):14286–14290

    Google Scholar 

  14. Zhang L, He Y, Yang X, Yuan H, Du Z, Wu Y (2015) Oxidative carbonylation of phenol to diphenyl carbonate by Pd/MO–MnFe2O4 magnetic catalyst. Chem Eng J 278:129–133

    CAS  Google Scholar 

  15. Jia H, Liu XJ, Chen X, Guan XX, Zheng XC, Liu P (2017) Chitosan-Fe3O4 anchored palladium nanoparticles: an efficiently magnetic catalyst for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 42(47):28425–28433

    CAS  Google Scholar 

  16. Qiao S, Wang R (2018) Biodiesel production from kitchen lard via transesterification by magnetic solid base catalyst. Pet Coal 60(3):474–482

    CAS  Google Scholar 

  17. Zanato AFS, Silva VC, Lima DAC, Jacinto MJ (2016) Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media. Appl Nanosci 7:781–791

    Google Scholar 

  18. Liu P, Liu S, Bian SW (2017) Core–shell-structured Fe3O4/Pd@ZIF-8 catalyst with magnetic recyclability and size selectivity for the hydrogenation of alkenes. J Mater Sci 52(20):12121–1213

    CAS  Google Scholar 

  19. Guillou N, Gao Q, Forster PM, Chang JS, Noguès M, Park S et al. (2001) Nickel (II) phosphate VSB-5: a magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew Chem Int Ed 40(15):2831–2834

    CAS  Google Scholar 

  20. Rezaei-Vahidian H, Zarei AR, Soleymani AR (2017) Degradation of nitro-aromatic explosives using recyclable magnetic photocatalyst: catalyst synthesis and process optimization. J Hazard Mater 325:310–318

    CAS  Google Scholar 

  21. Pal B, Sharon M (2000) Preparation of iron oxide thin film by metal organic deposition from Fe (III)-acetylacetonate: a study of photocatalytic properties. Thin Solid Films 379(1–2):83–88

    CAS  Google Scholar 

  22. Zhong J, Cao C (2010) Nearly monodisperse hollow Fe2O3 nanoovals: Synthesis, magnetic property and applications in photocatalysis and gas sensors. Sens Actuators B: Chem 145(2):651–656

    CAS  Google Scholar 

  23. Sergeev GB (2002) Size effects in nanochemistry. Ross Khim Zh46(5):22–29

    CAS  Google Scholar 

  24. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214

    Google Scholar 

  25. Sharma R, Singhal S (2015) Photodegradation of textile dye using magnetically recyclable heterogeneous spinel ferrites. J Chem Technol Biotechnol 90(5):955–962

    CAS  Google Scholar 

  26. Tan GQ, Zheng YQ, Miao HY, Xia A, Ren HJ (2012) Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. J Am Ceram Soc 95(1):280–289

    CAS  Google Scholar 

  27. Meng W, Hu R, Yang J, Du Y, Li J, Wang H (2016) Influence of lanthanum-doping on photocatalytic properties of BiFeO3 for phenol degradation. Chin J Catal 37(8):1283–1292

    CAS  Google Scholar 

  28. Wang X, Lin Y, Ding X, Jiang J (2011) Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J Alloy Compd 509(23):6585–6588

    CAS  Google Scholar 

  29. Wang W, Li N, Chi Y, Li Y, Yan W, Li X, Shao C (2013) Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceram Int 39(4):3511–3518

    CAS  Google Scholar 

  30. Teng CJ, Xie D, Sun MX et al. (2016) Sucrose-templated nanoporous BiFeO3 for promising magnetically recoverable multifunctional environment-purifying applications: adsorption and photocatalysis. RSC Adv 6(72):67550–67555

    CAS  Google Scholar 

  31. Bharathkumar S, Sakar M, Balakumar S (2015) Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities. Phys Chem Chem Phys 17(27):17745–17754

    CAS  Google Scholar 

  32. Kim SH, Jeong JW, Lee JW, Shin SC (2009) Enhancement of saturation magnetization in epitaxial (111) BiFeO3 films by magnetic annealing. Thin Solid Films 517(8):2749–2752

    CAS  Google Scholar 

  33. Zhang W, Wang M, Zhao W, Wang B (2013) Magnetic composite photocatalyst ZnFe2O4/BiVO4: synthesis, characterization, and visible-light photocatalytic activity. Dalton Trans 42(43):15464–15474

    CAS  Google Scholar 

  34. Hou Y, Li X, Zhao Q, Chen G (2013) ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl Catal B: Environ 142:80–88

    Google Scholar 

  35. Cao Y, Jia D, Hu P, Wang R (2013) One-step room-temperature solid-phase synthesis of ZnFe2O4 nanomaterials and its excellent gas-sensing property. Ceram Int 39(3):2989–2994

    CAS  Google Scholar 

  36. Tabari T, Singh D, Jamali SS (2017) Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation. J Environ Chem Eng 5(1):931–939

    CAS  Google Scholar 

  37. Sun S, Yang X, Zhang Y, Zhang F, Ding J, Bao J, Gao C (2012) Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Prog Nat Sci: Mater Int 22(6):639–643

    Google Scholar 

  38. Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A (2017) Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. J Photochem Photobiol A: Chem 332:188–195

    CAS  Google Scholar 

  39. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    CAS  Google Scholar 

  40. Song H, Zhu L, Li Y, Lou Z, Xiao M, Ye Z (2015) Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J Mater Chem A 3(16):8353–8360

    CAS  Google Scholar 

  41. Liu H, Hao H, Xing J, Dong J, Zhang Z, Zheng Z, Zhao K (2016) Enhanced photocatalytic capability of zinc ferrite nanotube arrays decorated with gold nanoparticles for visible light-driven photodegradation of rhodamine B. J Mater Sci 51(12):5872–5879

    CAS  Google Scholar 

  42. Xiong P, Fu Y, Wang L, Wang X (2012) Multi-walled carbon nanotubes supported nickel ferrite: a magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chem Eng J 195:149–157

    Google Scholar 

  43. Anandan S, Ikuma Y, Niwa K (2010) An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials. Solid State Phenom 162:239–260.

  44. Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825

    CAS  Google Scholar 

  45. Li XZ, Li FB (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35(11):2381–2387

    CAS  Google Scholar 

  46. Jabbari V, Hamadanian M, Shamshiri M, Villagrán D (2016) Band gap and Schottky barrier engineered photocatalyst with promising solar light activity for water remediation. RSC Adv 6(19):15678–15685

    CAS  Google Scholar 

  47. de Souza ML, dos Santos DP, Corio P (2018) Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation. RSC Adv 8(50):28753–28762

    Google Scholar 

  48. Mondal S, Reyes MEDA, Pal U (2017) Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv 7(14):8633–8645

    CAS  Google Scholar 

  49. Roldan MV, Castro Y, Pellegri N, Duran A (2015) Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles. J Sol–Gel Sci Technol 76(1):180–194

    CAS  Google Scholar 

  50. Zhang X, Wang B, Wang X et al. (2015) Preparation of M@BiFeO3 nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity. J Am Ceram Soc 98(7):2255–2263

    CAS  Google Scholar 

  51. Soltani T, Lee BK (2017) Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO3 magnetic nanoparticles with fast sonochemical synthesis. Photochem Photobiol Sci 16(1):86–95

    CAS  Google Scholar 

  52. Wang S, Chen D, Niu F, Zhang N, Qin L, Huang Y (2016) Enhancement in visible light photocatalytic activity of BiFeO3 photocatalysts by Pd cocatalyst. Appl Phys A 122(9):867

    Google Scholar 

  53. Niu F, Chen D, Qin L, Gao T et al. (2015) Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances. Sol Energy Mater Sol Cells 143:386–396

    CAS  Google Scholar 

  54. Cao X, Gu L, Lan X, Zhao C, Yao D, Sheng W (2007) Spinel ZnFe2O4 nanoplates embedded with Ag clusters: preparation, characterization, and photocatalytic application. Mater Chem Phys 106(2–3):175–180

    CAS  Google Scholar 

  55. Zhu Z, Liu F, Zhang H, Zhang J, Han L (2015) Photocatalytic degradation of 4-chlorophenol over ag/MFe2O4 (M = Co, Zn, Cu, and Ni) prepared by a modified chemical co-precipitation method: a comparative study. Rsc Adv 5(68):55499–55512

    CAS  Google Scholar 

  56. Mosali VSS, Qasim M, Mullamuri B, Chandu B, Das D (2017) Synthesis and characterization of Ag/CoFe2O4/polyaniline nanocomposite for photocatalytic application. J Nanosci Nanotechnol 17(12):8918–8924

    CAS  Google Scholar 

  57. Harish KN, Bhojya Naik HS, Prashanth Kumar PN, Viswanath R (2013) Optical and photocatalytic properties of solar light active Nd-substituted Ni ferrite catalysts: for environmental protection. ACS Sustain Chem Eng 1(9):1143–1153

    CAS  Google Scholar 

  58. Patil SS, Tamboli MS, Deonikar VG, Umarji GG, Ambekar JD, Kulkarni MV, Patil DR (2015) Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity. Dalton Trans 44(47):20426–20434

    CAS  Google Scholar 

  59. Zeng J, Zeng W, Zeng H (2017) In situ plasmonic Au nanoparticle anchored nickel ferrite: an efficient plasmonic photocatalyst for fluorescein-sensitized hydrogen evolution under visible light irradiation. J Solid State Chem 253:294–304

    CAS  Google Scholar 

  60. Song XM, Wu JM, Yan M (2009) Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. Thin Solid Films 517(15):4341–4347

    CAS  Google Scholar 

  61. Li CJ, Wang JN, Wang B, Gong JR, Lin Z (2012) A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light. Mater Res Bull 47(2):333–337

    CAS  Google Scholar 

  62. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chim 9(5–6):750–760

    CAS  Google Scholar 

  63. Haw C, Chiu W, Rahman SA et al. (2016) The design of new magnetic-photocatalyst nanocomposites (CoFe2O4–TiO2) as smart nanomaterials for recyclable-photocatalysis applications. New J Chem 40(2):1124–1136

    CAS  Google Scholar 

  64. Li Y, Zhang M, Guo M, Wang X (2009) Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met 28(5):423–427

    CAS  Google Scholar 

  65. Hernández S, Hidalgo D, Sacco A et al. (2015) Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys Chem Chem Phys 17(12):7775–7786

    Google Scholar 

  66. Goodarzi M, Joukar S, Ghanbari D, Hedayati K (2017) CaFe2O4–ZnO magnetic nanostructures: photo-degradation of toxic azo-dyes under UV irradiation. J Mater Sci: Mater Electron 28(17):12823–12838

    CAS  Google Scholar 

  67. Wang H, Zhou P, Guo R, Wang Y, Zhan H, Yuan Y (2018) Synthesis of rectorite/Fe3O4/ZnO composites and their application for the removal of methylene blue dye. Catalysts 8(3):107

    Google Scholar 

  68. Sin JC, Tan SQ, Quek JA, Lam SM, Mohamed AR (2018) Facile fabrication of hierarchical porous ZnO/Fe3O4 composites with enhanced magnetic, photocatalytic and antibacterial properties. Mater Lett 228:207–211

    CAS  Google Scholar 

  69. Nguyen VC, Nguyen NLG, Pho QH (2015) Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198. Adv Nat Sci: Nanosci Nanotechnol 6(3):035001

    Google Scholar 

  70. El Ghoul J, Kraini M, Lemine OM, El Mir L (2015) Sol–gel synthesis, structural, optical and magnetic properties of Co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 26(4):2614–2621

    CAS  Google Scholar 

  71. Rahmayeni R, Stiadi Y (2017) Photocatalytic performance of ZnO-ZnFe2O4 magnetic nanocomposites on degradation of congo red dye under solar light irradiation. J Mater Environ Sci 8(5):1634–1643

    CAS  Google Scholar 

  72. Da Silva RA, Jacinto MJ, Silva VC, Cabana DC (2018) Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. J Sol–Gel Sci Technol 86:94–103

    Google Scholar 

  73. Jacinto MJ, Vasconcelos LG, Sousa Jr PT, Dall’Oglio EL, Ferreira LF, Silva CF, Oliveira ES (2019) Biosynthesis of Ag nanoparticles and their immobilization on multifunctional ZnO materials—a step closer to environmental feasibility. J Sol–Gel Sci Technol 99:21–32

    Google Scholar 

  74. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Van Wassenhoven A, Pillai SC (2012) Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J Hazard Mater 211:88–94

    Google Scholar 

  75. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40(4):3000–3009

    CAS  Google Scholar 

  76. Almeida RM, Xu J (2018) Sol‐gel processing of sulfide materials. In: Klein L, Aparicio M, Jitianu A (eds), Handbook of sol-gel science and technology: processing, characterization and applications, p 403–428, Springer, Cham, Switzerland

  77. Song J, Wang X, Huang J et al. (2016) High performance of N-doped TiO2-magnetic activated carbon composites under visible light illumination: synthesis and application in three-dimensional photoelectrochemical process. Electrochim Acta 222:1–11

    CAS  Google Scholar 

  78. Pelaez M, Baruwati B, Varma RS, Luque R, Dionysiou DD (2013) Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation. Chem Commun 49(86):10118–10120

    CAS  Google Scholar 

  79. He Z, Hong T, Chen J, Song S (2012) A magnetic TiO2 photocatalyst doped with iodine for organic pollutant degradation. Sep Purif Technol 96:50–57

    CAS  Google Scholar 

  80. Wang X, Song J, Huang J, Zhang J, Wang X, Ma R, Zhao J (2016) Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation. Appl Surf Sci 390:190–201

    CAS  Google Scholar 

  81. Wei F, Liu T, Zhou F, Ran W, Yao Y, Wang H, Wang P (2018) Magnetic recoverable FN Co-doped ZnFe2O4/C/TiO2 nanocomposites with UV-Vis light photocatalytic activity. Environ Eng Sci 35(1):37–45

    CAS  Google Scholar 

  82. Chen H, Jin H, Dong B (2012) Preparation of magnetically supported chromium and sulfur co-doped TiO2 and use for photocatalysis under visible light. Res Chem Intermed 38(9):2335–2342

    CAS  Google Scholar 

  83. Yan X, Yuan K, Lu N et al. (2017) The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl Catal B: Environ 218:20–31

    CAS  Google Scholar 

  84. Chalasani R, Vasudevan S(2013) Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies ACS Nano 7(5):4093–4104

    CAS  Google Scholar 

  85. Luo W, Hu F, Hu Y et al. (2019) Persulfate enhanced visible light photocatalytic degradation of organic pollutants by construct magnetic hybrid heterostructure. J Alloy Compd 806:1207–1219

    CAS  Google Scholar 

  86. Kumar S, Kumar B, Baruah A, Shanker V (2013) Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J Phys Chem C 117(49):26135–26143

    CAS  Google Scholar 

  87. Inbaraj DJ, Chandran B, Mangalaraj C (2019) Synthesis of CoFe2O4 and CoFe2O4/g-C3N4 nanocomposite via honey mediated sol-gel auto combustion method and hydrothermal method with enhanced photocatalytic and efficient Pb+2 adsorption property. Mater Res Express 6(5):055501

    CAS  Google Scholar 

  88. Wu Z, Chen X, Liu X, Yang X, Yang Y (2019) A ternary magnetic recyclable ZnO/Fe3O4/gC3N4 composite photocatalyst for efficient photodegradation of monoazo dye. Nanoscale Res Lett 14(1):147

    Google Scholar 

  89. Gawande MB, Goswami A, Asefa T et al. (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590

    CAS  Google Scholar 

  90. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    CAS  Google Scholar 

  91. Jacinto MJ, Wizbiki M, Justino LC, Silva VC (2016) Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions. J Sol–Gel Sci Technol 77(2):298–305

    CAS  Google Scholar 

  92. Wang X, He B, Hu Z, Zeng Z, Han S (2014) Current advances in precious metal core–shell catalyst design. Sci Technol Adv Mater 15(4):043502

    Google Scholar 

  93. Neris AM, Schreiner WH, Salvador C, Silva UC, Chesman C, Longo E, Santos IMG (2018) Photocatalytic evaluation of the magnetic core@shell system (Co, Mn) Fe2O4@TiO2 obtained by the modified Pechini method. Mater Sci Eng: B 229:218–226

    CAS  Google Scholar 

  94. Noval VE, Carriazo JG (2019) Fe3O4-TiO2 and Fe3O4-SiO2 Core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mater Res 22(3), https://doi.org/10.1590/1980-5373-mr-2018-0660

  95. Tan L, Zhang X, Liu Q et al. (2015) Synthesis of Fe3O4@TiO2 core–shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf A: Physicochem Eng Asp 469:279–286

    CAS  Google Scholar 

  96. Salamat S, Younesi H, Bahramifar N (2017) Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv 7(31):19391–19405

    CAS  Google Scholar 

  97. Han C, Jing MX, Shen XQ, Qiao GJ (2017) Fabrication and properties of core–shell structural nano-TiO2@Fe magnetic photocatalyst for removal of phenol waste water. Monatshefte für Chem-Chem Mon 148(7):1165–1170

    CAS  Google Scholar 

  98. Chang J, Zhang Q, Liu Y, Shi Y, Qin Z (2018) Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol. J Mater Sci: Mater Electron 29(10):8258–8266

    CAS  Google Scholar 

  99. Hong RY, Zhang SZ, Di GQ, Li HZ, Zheng Y, Ding J, Wei DG (2008) Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater Res Bull 43(8-9):2457–2468

    CAS  Google Scholar 

  100. Nikazar M, Alizadeh M, Lalavi R, Rostami MH (2014) The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol. J Environ Health Sci Eng 12(1):21

    Google Scholar 

  101. Nishad KK, Tiwari N, Pandey RK (2018) Synthesis and characterization of ferromagnetic Fe3O4–ZnO hybrid core–shell nanoparticles. J Electron Mater 47(7):3440–3450

    CAS  Google Scholar 

  102. Moradi S, Fardood ST, Ramazani A (2018) Green synthesis and characterization of magnetic NiFe2O4@ZnO nanocomposite and its application for photocatalytic degradation of organic dyes. J Mater Sci: Mater Electron 29:14151–14160

    CAS  Google Scholar 

  103. Kulkarni SD, Kumbar SM, Menon SG, Choudhari KS, Santhosh C (2017) Novel magnetically separable Fe3O4@ZnO Core–Shell nanocomposite for UV and visible light photocatalysis. Adv Sci Lett 23(3):1724–1729

    Google Scholar 

  104. Yao Y, Lu F, Zhu Y, Wei F, Liu X, Lian C, Wang S (2015) Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. J Hazard Mater 297:224–233

    CAS  Google Scholar 

  105. Gholizadeh A, Abharya A (2020) Structural, optical and magnetic feature of core-shell nanostructured Fe3O4@GO in photocatalytic activity. Iranian Journal of Chemistry and Chemical Engineering 39(2):49–58

  106. Zhang CF, Qiu LG, Ke F, Zhu YJ, Yuan YP, Xu GS, Jiang X (2013) A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O@MIL-100 (Fe) for the decolorization of methylene blue dye. J Mater Chem A 1(45):14329–14334

    CAS  Google Scholar 

  107. Zhang J, Li L, Shi R, Mei J, Xiao Z, Ma W (2019) An efficient approach for the synthesis of magnetic separable Fe3O4@TiO2 core-shell nanocomposites and its magnetic and photocatalytic performances. Mater Res Express 6(10):105014

    CAS  Google Scholar 

  108. Wan J, Li H, Chen K (2009) Synthesis and characterization of Fe3O4@ZnO core–shell structured nanoparticles. Mater Chem Phys 114(1):30–32

    CAS  Google Scholar 

  109. Wang J, Yang J, Li X et al. (2015) Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation. J Mol Catal A: Chem 406:97–105

    CAS  Google Scholar 

  110. Bian X, Hong K, Ge X, Song R, Liu L, Xu M (2015) Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J Phys Chem C 119(4):1700–1705

    CAS  Google Scholar 

  111. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022

    CAS  Google Scholar 

  112. Cheng JP, Ma R, Li M, Wu JS, Liu F, Zhang XB (2012) Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties. Chem Eng J 210:80–86

    CAS  Google Scholar 

  113. Kim S, Crandall BS, Lance MJ, Cordonnier N, Lauterbach J, Sasmaz E (2019) Activity and stability of NiCe@SiO2 multi–yolk–shell nanotube catalyst for tri-reforming of methane. Appl Catal B: Environ 259:118037

    CAS  Google Scholar 

  114. Li X, Cui M, Lee Y, Choi J, Khim J (2019) Application of pea-like yolk–shell structured Fe3O4@TiO2 nanosheets for photocatalytic and photo-Fenton oxidation of bisphenol-A. RSC Adv 9(38):22153–22160

    CAS  Google Scholar 

  115. Su W, Zhang T, Li L, Xing J, He M, Zhong Y, Li Z (2014) Synthesis of small yolk–shell Fe3O4@TiO2 nanoparticles with controllable thickness as recyclable photocatalysts. RSC Adv 4(17):8901–8906

    CAS  Google Scholar 

  116. Xie T, Liu C, Xu L, Yang J, Zhou W (2013) Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J Phys Chem C 117(46):24601–24610

    CAS  Google Scholar 

  117. Qiu W, Zheng Y, Haralampides KA (2007) Study on a novel POM-based magnetic photocatalyst: photocatalytic degradation and magnetic separation. Chem Eng J 125(3):165–176

    CAS  Google Scholar 

  118. Xu SH, Feng DL, Li DX, Shangguan WF (2008) Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin J Chem 26(5):842–846

    CAS  Google Scholar 

  119. Abazari R, Mahjoub AR (2017) Potential applications of magnetic β-AgVO3/ZnFe2O4 nanocomposites in dyes, photocatalytic degradation, and catalytic thermal decomposition of ammonium perchlorate. Ind Eng Chem Res 56(3):623–634

    CAS  Google Scholar 

  120. Amir M, Kurtan U, Baykal A (2015) Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. J Ind Eng Chem 27:347–353

    CAS  Google Scholar 

  121. Sudhaik A, Raizada P, Shandilya P, Singh P (2018) Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J Environ Chem Eng 6(4):3874–3883

    CAS  Google Scholar 

  122. Habibi-Yangjeh A, Shekofteh-Gohari M (2016) Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light. Sep Purif Technol 166:63–72

    CAS  Google Scholar 

  123. Xie T, Li H, Liu C, Yang J, Xiao T, Xu L (2018) Magnetic photocatalyst BiVO4/Mn-Zn ferrite/reduced graphene oxide: synthesis strategy and its highly photocatalytic activity. Nanomaterials 8(6):380

    Google Scholar 

  124. Xie T, Xu L, Liu C, Zhang X (2018) A novel magnetic heterojunction photocatalyst TiO2/SrFe12O19: synthesis strategy, photocatalytic activity, and unprecedented migration mechanism of photoexcited charge carrier. Mater Technol 33(9):582–591

    CAS  Google Scholar 

  125. Xie T, Xu L, Liu C, Wang Y (2013) Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light. Appl Surf Sci 273:684–691

    CAS  Google Scholar 

  126. Jing L, Xu Y, Huang S, Xie M et al. (2016) Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity. Appl Catal B: Environ 199:11–22

    CAS  Google Scholar 

  127. Habibi-Yangjeh A, Shekofteh-Gohari M (2017) Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through pn heterojunctions. Sep Purif Technol 184:334–346

    CAS  Google Scholar 

  128. Zeng Y, Guo N, Song Y et al. (2018) Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. J Colloid Interface Sci 514:664–674

    CAS  Google Scholar 

  129. Asiabani N, Nabiyouni G, Khaghani S, Ghanbari D (2017) Green synthesis of magnetic and photo-catalyst PbFeO-PbS nanocomposites by lemon extract: nano-sphere PbFeO and star-like PbS. J Mater Sci: Mater Electron 28(1):1101–1114

    CAS  Google Scholar 

  130. Singh P, Sudhaik A, Raizada P, Shandilya P, Sharma R, Hosseini-Bandegharaei A (2019) Photocatalytic performance and quick recovery of BiOI/Fe3O4@graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light. Mater Today Chem 12:85–95

    CAS  Google Scholar 

  131. de Góis MM, de Paiva Araújo W, da Silva RB, da Luz Jr GE, Soares JM (2019) Bi25FeO40−Fe3O4−Fe2O3 composites: synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J Alloy Compd 785:598–602

    Google Scholar 

  132. Fu W, Yang H, Li M, Li M, Yang N, Zou G (2005) Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater Lett 59(27):3530–3534

    CAS  Google Scholar 

  133. Beydoun D, Amal R, Scott J, Low G, McEvoy S (2001) Studies on the mineralization and separation efficiencies of a magnetic photocatalyst. Chem Eng Technol 24(7):745–748

    CAS  Google Scholar 

  134. Hamad H, El-Latif MA, Kashyout AEH, Sadik W, Feteha M (2015) Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J Chem 39(4):3116–3128

    CAS  Google Scholar 

  135. Luo S, Chai F, Zhang L, Wang C, Li L, Liu X, Su Z (2012) Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S3 core-shell hierarchical structures and their magnetically recyclable photocatalytic activity. J Mater Chem 22(11):4832–4836

    CAS  Google Scholar 

  136. Liu W, Yuan K, Liu P, Chen M (2019) Construction of detachable core/shell Fe3O4@C supported noble metal catalysts and their catalytic performance. Colloids Surf A: Physicochem Eng Asp 580:123729

    CAS  Google Scholar 

  137. Chen CC, Butler E, Al Ahmad M, Hung YT, Fu YP (2014) Characterizations of TiO2@Mn-Zn ferrite powders for magnetic photocatalyst prepared from used alkaline batteries and waste steel pickling liquor. Mater Res Bull 50:178–182

    CAS  Google Scholar 

  138. Harraz FA, Mohamed RM, Rashad MM, Wang YC, Sigmund W (2014) Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceram Int 40(1):375–384

    CAS  Google Scholar 

  139. Liu J, Zuo S, Yu L, Yu Y, Li B, Chen P (2013) Visible light photodegradation of methylene blue by AgBr–TiO2/SiO2@Fe3O4 magnetic photocatalysts. Particuology 11(6):728–731

    CAS  Google Scholar 

  140. Chen SH, Yin Z, Luo SL, Au CT, Li XJ (2013) Preparation of magnetic Fe3O4/SiO2/Bi2WO6 microspheres and their application in photocatalysis. Mater Res Bull 48(2):725–729

    CAS  Google Scholar 

  141. Nasiri A, Tamaddon F, Mosslemin MH, Amiri Gharaghani M, Asadipour A (2019) Magnetic nano-biocomposite CuFe2O4@methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environ Health Eng Manag J 6(1):41–51

    CAS  Google Scholar 

  142. Zhao Z, Long Y, Luo S, Wu W, Ma J (2019) Preparation of a magnetic mesoporous Fe3O4–Pd@TiO2 photocatalyst for the efficient selective reduction of aromatic cyanides. New J Chem 43(16):6294–6302

    CAS  Google Scholar 

  143. Li SK, Huang FZ, Wang Y, Shen YH, Qiu LG, Xie AJ, Xu SJ (2011) Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J Mater Chem 21(20):7459–7466

    CAS  Google Scholar 

  144. Zhan J, Zhang H, Zhu G (2014) Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceram Int 40(6):8547–8559

    CAS  Google Scholar 

  145. Fu W, Yang H, Li M, Chang L, Yu Q, Xu J, Zou G (2006) Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Mater Lett 60(21–22):2723–2727

    CAS  Google Scholar 

  146. Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S (2014) Synthesis of Fe3O4/SiO2/CeO2 core–shell magnetic and their application as photocatalyst. J Nanosci Nanotechnol 14(10):7756–7762

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fundação de Amparo a Pesquisa do Estado de Mato Grosso (FAPEMAT), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, finance code: 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jacinto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacinto, M.J., Ferreira, L.F. & Silva, V.C. Magnetic materials for photocatalytic applications—a review. J Sol-Gel Sci Technol 96, 1–14 (2020). https://doi.org/10.1007/s10971-020-05333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05333-9

Keywords

Navigation