Skip to main content
Log in

Annealing temperature-dependent microstructure and optical and electrical properties of solution-derived Gd-doped ZrO2 high-k gate dielectrics

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In current work, the microstructure and optical and electrical properties of sol–gel-derived Gd-doped ZrO2 gate dielectric thin films as functions of annealing temperatures were systemically investigated. Analyzes by x-ray diffraction have indicated that the 240 °C-baked sample as well as those samples annealed at lower temperatures keep amorphous state. In the sample annealed at 500 °C, however, the amorphous phase disappears and tetragonal ZrO2 is formed. Measurements from ultraviolet-visible spectroscopy (UV/Vis) have demonstrated that transmittance of all samples in the visible region is approximately 80% and the increase in band gap energy has been found with increasing the annealing temperature. Electrical properties of all samples based on Al/Si/ZrGdOx/Al MOS capacitor have been investigated by using semiconductor device analyzer. Through the analysis and calculation of the electrical characteristic curves, solution-processed Al/ZrGdOx/Si/Al capacitor shows improved performances at a annealing temperature of 400 °C, such as high dielectric constant (k) of 16.56, lowest oxidation charge density (Q ox) of −0.74 × 1012 cm−2, and boundary trap oxidation charge density (N bt) of 3.17 × 1012 cm−2. In addition, the leakage current mechanism for 400 °C-annealed sample has been discussed in detail.

Graphical Abstract

solution-processed Gd-doped ZrO2 gate dielectric films were realized. Al/ZrGdOx/Si/Al capacitor shows optimized and improved performances at a annealing temperature of 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He G, Zhu LQ, Liu M, Fang Q, Zhang LD (2007) Appl Surf Sci 253:3413–3418

    Article  Google Scholar 

  2. He G, Fang Q, Liu M, Zhu LQ, Zhang LD (2004) J Cryst Growth 268:155–162

    Article  Google Scholar 

  3. He G, Deng B, Liu M, Ma YQ, Chen XS, Lv JG, Shi SW, Song XP, Sun ZQ (2013) Sci Adv Mater 5:709–712

    Article  Google Scholar 

  4. Jones AC, Aspinall HC, Chalker PR, Potter RJ, Kukli K, Rahtu A, Ritala M, LeskeläM (2004) J Mater Chem 14:3101–3112

    Article  Google Scholar 

  5. Wilk GD, Wallace RM, Anthony JM (2001) J Appl Phys 89:5243–5275

    Article  Google Scholar 

  6. Liao L, Bai JW, Lin YC, Qu YQ, Huang Y, Duan XF (2010) Adv Mater 22:1941–1945

    Article  Google Scholar 

  7. Zhang W, Cui Y, Hu ZG, Yu WL, Sun J, Xu N, Ying ZF, Wu JD (2012) Thin Solid Films 520:6361–6367

    Article  Google Scholar 

  8. Xiong Y, Tu H, Du J, Ji M, Zhang X, Wang L, (2010) Appl Phys Lett 97:012901

  9. Xiao DQ, He G, Lv JG, Wang PH, Liu M, Gao J, Jin P, Jiang SS, Li WD, Sun ZQ (2017) J Alloys Compd 699:415–420

    Article  Google Scholar 

  10. Jõgi Indrek, Tamm A, Kukli K, Kemell M, Lu J, Sajavaara T, Ritala M, Leskeläb M (2010) J Electrochem Soc 157:G202–G210

    Article  Google Scholar 

  11. Cho MH, Moon DW, Park SA, RhoYS, Kim YK, Jeong K, Chang CH, Gu JH, Lee JH, Choi SY (2004) Appl Phys Lett 84:678–680

    Article  Google Scholar 

  12. Venkatachalam DK, Bradby JE, Saleh MN, Ruffell S, Elliman RG (2011) J Appl Phys 110:043527

  13. Iizuka H, Yokoo K, Ono S (1992) Appl Phys Lett 61:2978–2980

    Article  Google Scholar 

  14. Ritala M, Kukli K, Rahtu A (2000) Science 288:319–321

    Article  Google Scholar 

  15. Zhu SL, Wang FH, Lou HY, Wu WT (1995) Surf Coat Technol 71:9–15

    Article  Google Scholar 

  16. Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martions R, Shan F, (2016) Appl Phys Lett 108:233506

  17. Jin P, He G, Fang ZB, Liu M, Xiao DQ, Gao J, Jiang SS, Li WD, Sun ZQ, Zhang M (2017) Ceram Int 43:3101–3106

    Article  Google Scholar 

  18. Chang SM, Doong RA (2005) Chem Mater 17:4837–4844

    Article  Google Scholar 

  19. Chaneliere C, Four S, Autran JL, Devine RAB, Sandler NP (1998) J Appl Phys 83:4823–4829

    Article  Google Scholar 

  20. Jo SJ, Ha JS, Park NK, Kang DK, Kim BH (2006) Thin Solid Films 513:253–257

    Article  Google Scholar 

  21. Park JH, Yoo YB, Lee KH, Jang WS, Oh JY, Chae SS, Baik HK (2013) ACS Appl Mater Interfaces 5:410–417

    Article  Google Scholar 

  22. Tan TT, Liu ZT, Lu HC, Liu WT, Yan F, Zhang WH (2009) Appl Phys A 97:475–479

    Article  Google Scholar 

  23. Ananthakumar R, Sang JK (2012) J Alloy Compd 544:115–119

    Article  Google Scholar 

  24. Liang LP, Sheng YG, Xu Y, Wu D, Sun YH (2007) Thin Solid Films 515:7765–7771

    Article  Google Scholar 

  25. Liu M, Fang Q, He G, Li L, Zhu LQ, Li GH, Zhang LD (2006) Appl Phys Lett 88:192904-192904-3

  26. Fan JB, Liu HX, Kuang QW, Gao B, Ma F, Hao Y (2012) Microelectron Reliab 52:1043–1049

    Article  Google Scholar 

  27. Das PS, Biswas A (2011) Microelectron Eng 88:282–286

    Article  Google Scholar 

  28. Lai PT, Chakraborty S, Chan CL, Cheng YC (2000) Appl Phys Lett 76:3744–3746

    Article  Google Scholar 

  29. Zhang JQ, Li ZX, Zhou H, Ye C, Wang H (2014) Appl Surf Sci 294:58–65

    Article  Google Scholar 

  30. Liu JW, Liao MY, Imura M, Tanaka A, Iwai H, Koide Y (2014) Sci Rep 4:6395

  31. Liu JW, Liao MY, Imura M, Oosato H, Watanabe E, Koide Y, (2013) Appl Phys Lett 102:112910

  32. Zhang JW, He G, Zhou L, Chen HS, Chen XS, Chen XF, Deng B, Lv JG, Sun ZQ (2014) J Alloy Comp 611:253–259

    Article  Google Scholar 

  33. Chen F, Bin X, Hella C, Shi X, Gladfelter WL, Campbell SA (2004) Microelectron Eng 72:263–266

    Article  Google Scholar 

  34. Quah HJ, Cheong KY (2012) J Alloys Compd 529:73–83

    Article  Google Scholar 

  35. Quah HJ, Cheong KY, Hassan Z, Lockman Z (2011) J Mater Sci Mater Electron 22:583–591

    Article  Google Scholar 

  36. Quah HJ, Lim WF, Cheong KY, Hassan Z, Lockman Z (2011) J Cryst Growth 326:2–8

    Article  Google Scholar 

  37. Gao F, Lee SJ, Chi DZ, Balakumar SK, Wong DL, (2007) Appl Phys Lett 90:252904

  38. Gao J, He G, Deng B, Xiao DX, Liu M, Jin P, Zheng CY, Sun ZQ (2016) J Alloy Compd 622:339–347

    Article  Google Scholar 

  39. Chiu FC (2006) J Appl Phys 100:114102

  40. Ding SJ, Zhang DW, Wang LK (2007) J Phys D 40:1072–1076

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from National Natural Science Foundation of China (51572002,11474284), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (J05015131), Anhui Provincial Natural Science Foundation (1608085MA06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. He or M. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., He, G., Sun, Z.Q. et al. Annealing temperature-dependent microstructure and optical and electrical properties of solution-derived Gd-doped ZrO2 high-k gate dielectrics. J Sol-Gel Sci Technol 83, 675–682 (2017). https://doi.org/10.1007/s10971-017-4468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4468-y

Keywords

Navigation