Skip to main content

Advertisement

Log in

Dip-coating for fibrous materials: mechanism, methods and applications

  • Review Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a review on dip-coating for fibrous materials, mainly concentrated on the mechanism, recently developed dip-coating methods and novel functional applications. The emphasis has been made here, to present theoretical basis of dip-coating-induced film deposition, especially, the reported works to predict the thickness based on various processing parameters. Different modified dip-coating techniques to fabricate deposited films for fibrous substrate have also been gathered. The scope of reviewed dip-coating methods are not only conventional solution and sol–gel-based dip-coating, but also recently developed vacuum-assisted, spin-assisted, photo-assisted and multi-layered dip-coating methods. An overview of reported and potential applications for coated fibrous materials has also been given, which mainly including self-cleaning, oil–water separation, conductive textiles, fibrous-based energy storage devices, and photonic crystals, etc. This review is intended to give readers a good horizon for the present status concerning variety of studies and applications related to dip-coating. An effort has been made here to report the important contributions in the area of dip-coating for fibrous substrate, and critical points regarding future research directions are outlined in the summary.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Reference

  1. Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D (2015) A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv Mater 27(34):4958–4962

    Article  Google Scholar 

  2. Gaulding EA, Diroll BT, Goodwin ED, Vrtis ZJ, Kagan CR, Murray CB (2015) Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv Mater 27(18):2846–2851

    Article  Google Scholar 

  3. Dey M, Doumenc F, Guerrier B (2016) Numerical simulation of dip-coating in the evaporative regime. Eur Phys J E 39(2):19

    Article  Google Scholar 

  4. Lu YF, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong WL, Guo YX, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature 389(6649):364–368

    Article  Google Scholar 

  5. Almeida RM, Goncalves MC, Portal S (2004) Sol-gel photonic bandgap materials and structures. J Non-Cryst Solids 345:562–569

    Article  Google Scholar 

  6. Lii DF, Huang JL, Tsui LJ, Lee SM (2002) Formation of BN films on carbon fibers by dip-coating. Surf Coat Technol 150(2-3):269–276

    Article  Google Scholar 

  7. Wu YC, Parola S, Marty O, Mugnier J (2004) Elaboration, structural characterization and optical properties of the yttrium alkoxide derived Y2O3 planar optical waveguides. Opt Mater 27(1):21–27

    Article  Google Scholar 

  8. Mehner A, Datchary W, Bleil N, Zoch HW, Klopfstein MJ, Lucca DA (2005) The influence of processing on crack formation, microstructure, density and hardness of sol-gel derived zirconia films. J Sol-Gel Sci Technol 36(1):25–32

    Article  Google Scholar 

  9. Hynek J, Kalousek V, Zouzelka R, Bezdicka P, Dzik P, Rathousky J, Demel J, Lang K (2014) High photocatalytic activity of transparent films composed of ZnO nanosheets. Langmuir 30(1):380–386

    Article  Google Scholar 

  10. Cisneros-Zevallos L, Krochta JM (2003) Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. J Food Sci 68(2):503–510

    Article  Google Scholar 

  11. Guglielmi M, Colombo P, Peron F, Esposti LMD (1992) Dependence of thickness on the withdrawal speed for SiO 2 and TiO 2 coatings obtained by the dipping method. J Mater Sci 27(18):5052–5056

    Article  Google Scholar 

  12. Guglielmi M, Zenezini S (1990) The thickness of sol-gel silica coatings obtained by dipping. J Non-Cryst Solids 121(1–3):303–309

    Article  Google Scholar 

  13. Jittavanich K, Clemons CB, Kreider KL, Aljarrah M, Evans E, Young GW (2010) Modeling, simulation and fabrication of coated structures using the dip coating technique. Chem Eng Sci 65(23):6169–6180

    Article  Google Scholar 

  14. Roland S, Pellerin C, Bazuin CG, Prud’homme RE (2012) Evolution of small molecule content and morphology with dip-coating rate in supramolecular PS-P4VP thin films. Macromolecules 45(19):7964–7972

    Article  Google Scholar 

  15. Roland S, Gamys CG, Grosrenaud J, Boisse S, Pellerin C, Prud’homme RE, Bazuin CG (2015) Solvent Influence on thickness, composition, and morphology variation with dip-coating rate in supramolecular PS-b-P4VP thin films. Macromolecules 48(14):4823–4834

    Article  Google Scholar 

  16. Faustini M, Louis B, Albouy PA, Kuemmel M, Grosso D (2010) Preparation of sol-gel films by dip-coating in extreme conditions. J Phys Chem C 114(17):7637–7645

    Article  Google Scholar 

  17. Faustini M, Boissiere C, Nicole L, Grosso D (2014) From chemical solutions to inorganic nanostructured materials: a journey into evaporation-driven processes. Chem Mater 26(1):709–723

    Article  Google Scholar 

  18. Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21(43):17033–17038

    Article  Google Scholar 

  19. Lee CH, Lu YF, Shen AQ (2006) Evaporation induced self assembly and rheology change during sol-gel coating. Phys Fluids 18(5):052105

    Article  Google Scholar 

  20. Uchiyama H, Shimaoka D, Kozuka H (2012) Spontaneous pattern formation based on the coffee-ring effect for organic-inorganic hybrid films prepared by dip-coating: effects of temperature during deposition. Soft Matter 8(44):11318–11322

    Article  Google Scholar 

  21. Wei Q, Achazi K, Liebe H, Schulz A, Noeske PLM, Grunwald I, Haag R (2014) Mussel-Inspired dendritic polymers as universal multifunctional coatings. Angew Chem Int Edit 53(43):11650–11655

    Article  Google Scholar 

  22. Faustini M, Ceratti DR, Louis B, Boudot M, Albouy PA, Boissiere C, Grosso D (2014) Engineering functionality gradients by dip coating process in acceleration mode. ACS Appl Mater Interfaces 6(19):17102–17110

    Article  Google Scholar 

  23. Zhang XR, Pei XQ, Wang QH, Wang TM (2015) Friction and wear of potassium titanate whisker filled carbon fabric/phenolic polymer composites. J Tribol Trans Asme 137(1):011605

    Article  Google Scholar 

  24. Qi HS, Liu JW, Deng YH, Gao SL, Mader E (2014) Cellulose fibres with carbon nanotube networks for water sensing. J Mater Chem A 2(15):5541–5547

    Article  Google Scholar 

  25. Zhang QH, Zhang W, Huang JY, Lai YK, Xing TL, Chen GQ, Jin WR, Liu HZ, Sun B (2015) Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Mater Design 85:796–799

    Article  Google Scholar 

  26. Foruzanmehr M, Vuillaume PY, Robert M, Elkoun S (2015) The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater Design 85:671–678

    Article  Google Scholar 

  27. Roberts M, Huang AF, Johns P, Owen J (2013) Dip-spin coating of reticulated vitreous carbon with composite materials to act as an electrode for 3D microstructured lithium ion batteries. J Power Sources 224:250–259

    Article  Google Scholar 

  28. Pu DF, Zhou WX, Li Y, Chen J, Chen JY, Zhang HM, Mi BX, Wang LH, Ma YW (2015) Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes. RSC Adv 5(122):100725–100729

    Article  Google Scholar 

  29. Zhao XL, Zheng BN, Huang TQ, Gao C (2015) Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7(21):9399–9404

    Article  Google Scholar 

  30. Pan XL, Stroh N, Brunner H, Xiong GX, Sheng SS (2003) Deposition of sol-gel derived membranes on Al2O3 hollow fibers by a vacuum-assisted dip-coating process. J Membrane Sci 226(1–2):111–118

    Article  Google Scholar 

  31. Tang XN, Tian MW, Qu LJ, Zhu SF, Guo XQ, Han GT, Sun KK, Hu XL, Wang YJ, Xu XQ (2015) Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synthetic Met 202:82–88

    Article  Google Scholar 

  32. Kafizas A, Parry SA, Chadwick AV, Carmalt CJ, Parkin IP (2013) An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states. Phys Chem Chem Phys 15(21):8254–8263

    Article  Google Scholar 

  33. Niu YG, Zhang X, Pan WZ, Zhao JP, Li Y (2014) Enhancement and wettability of self-assembled GO sheets as interfacial layers of CF/PI composites. RSC Adv 4(15):7511–7515

    Article  Google Scholar 

  34. Blaese D, Garcia DE, Guglielmi P, Hotza D, Fredel MC, Janssen R (2015) ZrO2 fiber-matrix interfaces in alumina fiber-reinforced model composites. J Eur Ceram Soc 35(5):1593–1598

    Article  Google Scholar 

  35. Church JS, Voda AS, Sutti A, George J, Fox BL, Magniez K (2015) A simple and effective method to ameliorate the interfacial properties of cellulosic fibre based bio-composites using poly (ethylene glycol) based amphiphiles. Eur Poly J 64:70–78

    Article  Google Scholar 

  36. Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon 49(9):3098–3106

    Article  Google Scholar 

  37. Li XG, Shen J (2011) A facile two-step dipping process based on two silica systems for a superhydrophobic surface. Chem Comm 47(38):10761–10763

    Article  Google Scholar 

  38. Wang H, Zakirov A, Yuldashev SU, Lee J, Fu D, Kang T (2011) ZnO films grown on cotton fibers surface at low temperature by a simple two-step process. Mater Lett 65(9):1316–1318

    Article  Google Scholar 

  39. Liu YT, Long T, Tang S, Sun JL, Zhu ZA, Guo YP (2014) Biomimetic fabrication and biocompatibility of hydroxyapatite/chitosan nanohybrid coatings on porous carbon fiber felts. Mater Lett 128:31–34

    Article  Google Scholar 

  40. Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohyd Polym 78(2):240–246

    Article  Google Scholar 

  41. Navarro CH, Moreno KJ, Chávez-Valdez A, Louvier-Hernández F, García-Miranda JS, Lesso R, Arizmendi-Morquecho A (2012) Friction and wear properties of poly(methyl methacrylate)–hydroxyapatite hybrid coating on UHMWPE substrates. Wear 282-283:76–80

    Article  Google Scholar 

  42. Morales-Nieto V, Navarro CH, Moreno KJ, Arizmendi-Morquecho A, Chávez-Valdez A, García-Miranda S, Louvier-Hernández JF (2013) Poly(methyl methacrylate)/carbonated hydroxyapatite composite applied as coating on ultra high molecular weight polyethylene. Prog Org Coat 76(1):204–208

    Article  Google Scholar 

  43. Subba-Rao V, Sudakar C, Esmacher J, Pantea M, Naik R, Hoffmann PM (2009) Improving a high-resolution fiber-optic interferometer through deposition of a TiO2 reflective coating by simple dip-coating. Rev Sci Instrum 80(11):115104

    Article  Google Scholar 

  44. Wang XL, Pan DC, Weng D, Low CY, Rice L, Han JY, Lu YF (2010) A general synthesis of Cu-In-S based multicomponent solid-solution nanocrystals with tunable band gap, size, and structure. J Phys Chem C 114(41):17293–17297

    Article  Google Scholar 

  45. Gu X, Trusty PA, Butler EG, Ponton CB (2000) Deposition of zirconia sols on woven fibre preforms using a dip-coating technique. J Eur Ceram Soc 20(6):675–684

    Article  Google Scholar 

  46. Desimone D, Dlouhy I, Lee WE, Koch D, Horvath J, Boccaccini AR (2010) Optically-transparent oxide fibre-reinforced glass matrix composites. J Non-Cryst Solids 356(44–49):2591–2597

    Article  Google Scholar 

  47. Nguyen HT, Miao L, Tanemura S, Tanemura M, Toh S, Kaneko K, Kawasaki M (2004) Structural and morphological characterization of anatase TiO2 coating on α-Alumina scale fiber fabricated by sol-gel dip-coating method. J Cryst Growth 271(1–2):245–251

    Article  Google Scholar 

  48. Yin YJ, Wang CX (2011) Multifunctional performances of nanocomposite SiO2/TiO2 doped cationic EBODAC film coated on natural cellulose matrix. J Sol-Gel Sci Technol 59(1):36–42

    Article  Google Scholar 

  49. Yin YJ, Wang CX (2013) Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers. Colloids Surf A 417:120–125

    Article  Google Scholar 

  50. Yin YJ, Li T, Fan F, Zhao CY, Wang CX (2013) Dynamically modifiable wettability comparisons of the hydrophilic and hydrophobic substrates coated with F/TiO2 hybrid sol by UV irradiation. Appl Surf Sci 283:482–489

    Article  Google Scholar 

  51. Yin YJ, Wang CX, Shen QK, Zhang GF, Galib CMA (2013) Surface deposition on cellulose substrate via cationic SiO2/TiO2 hybrid sol for transfer printing using disperse dye. Ind Eng Chem Res 52(31):10656–10663

    Article  Google Scholar 

  52. Rehana P, Ummer RB, Thevenot Camille, Rouxel Didier, Thomas Sabu, Kalarikkal N (2016) Electric, magnetic, piezoelectric and magnetoelectric studies of phase pure (BiFeO3–NaNbO3)–(P(VDF-TrFE)) nanocomposite films prepared by spin coating. RSC Adv 6:28069

    Article  Google Scholar 

  53. Chen RJ, Huang M, Huang WZ, Shen Y, Lin YH, Nan CW (2014) Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries. J Mater Chem A 2(33):13277–13282

    Article  Google Scholar 

  54. Jo JW, Jung JW, Lee JU, Jo WH (2010) Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 4(9):5382–5388

    Article  Google Scholar 

  55. Wang XD, Shi F, Gao XX, Fan CM, Huang W, Feng XS (2013) A sol-gel dip/spin coating method to prepare titanium oxide films. Thin Solid Films 548:34–39

    Article  Google Scholar 

  56. Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858

    Article  Google Scholar 

  57. Harwood DW, Taylor ER, Moore R, Payne D (2003) Fabrication of fluoride glass planar waveguides by hot dip spin coating. J Non-Cryst Solids 332(1–3):190–198

    Article  Google Scholar 

  58. Cho J, Char K, Hong JD, Lee KB (2001) Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv Mater 13(14):1076–1078

    Article  Google Scholar 

  59. Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009

    Article  Google Scholar 

  60. Chiarelli PA, Johal MS, Casson JL, Roberts JB, Robinson JM, Wang HL (2001) Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv Mater 13(15):1167–1171

    Article  Google Scholar 

  61. Kharlampieva E, Kozlovskaya V, Chan J, Ankner JF, Tsukruk VV (2009) Spin-assisted layer-by-layer assembly: variation of stratification as studied with neutron reflectivity. Langmuir 25(24):14017–14024

    Article  Google Scholar 

  62. Wang YH, Liu J, Wu X, Yang B (2014) Adhesion enhancement of indium tin oxide (ITO) coated quartz optical fibers. Appl Surf Sci 308:341–346

    Article  Google Scholar 

  63. Nie WY, Li Y, Zhou W, Liu JW, Carroll DL (2012) Multi-layer deposition of conformal, transparent, conducting oxide films for device applications. Thin Solid Films 520(11):4008–4015

    Article  Google Scholar 

  64. Dolay A, Courtois C, d’Astorg S, Rguiti M, Petitniot JL, Leriche A (2014) Fabrication and characterization of metal core piezoelectric fibres by dip coating process. J Eur Ceram Soc 34(12):2951–2957

    Article  Google Scholar 

  65. Nagao D, Kameyama R, Matsumoto H, Kobayashi Y, Konno M (2008) Single- and multi-layered patterns of polystyrene and silica particles assembled with a simple dip-coating. Colloids Surf A 317(1–3):722–729

    Article  Google Scholar 

  66. Barletta M, Trovalusci F, Gisario A, Venettacci S (2013) New ways to the manufacturing of pigmented multi-layer protective coatings. Surf Coat Technol 232:860–867

    Article  Google Scholar 

  67. Zhou H, Wang H, Niu H, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670

    Article  Google Scholar 

  68. Tanaka DAP, Tanco MAL, Nagase T, Okazaki J, Wakui Y, Mizukami F, Suzuki TM (2006) Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticles. Adv Mater 18(5):630–632

    Article  Google Scholar 

  69. Smith DA, Holmberg VC, Korgel BA (2010) Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. ACS Nano 4(4):2356–2362

    Article  Google Scholar 

  70. Zhang XZ, Lin B, Ling YH, Dong YC, Meng GY, Liu XQ (2010) An anode-supported hollow fiber solid oxide fuel cell with (Pr0.5Nd0.5)(0.7)Sr0.3MnO3-delta-YSZ composite cathode. J Alloys Compd 497(1–2):386–389

    Article  Google Scholar 

  71. Bazzarelli F, Bernardo P, Tasselli F, Clarizia G, Dzyubenko VG, Vdovin P, Jansen JC (2011) Multilayer composite SBS membranes for pervaporation and gas separation. Sep Purif Technol 80(3):635–642

    Article  Google Scholar 

  72. Samad YA, Li YQ, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7(17):9195–9202

    Article  Google Scholar 

  73. Ramasubramanian K, Severance MA, Dutta PK, Ho WSW (2015) Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports. J Colloid Interf Sci 452:203–214

    Article  Google Scholar 

  74. Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater 6:e93

    Article  Google Scholar 

  75. Matsuzaki Y, Hishinuma M, Yasuda I (1999) Photo-excitation effects on pyrolysis of metallo-organic precursors for yttria-stabilized zirconia thin films. Thin Solid Films 354(1–2):38–42

    Article  Google Scholar 

  76. Kafizas A, Dunnill CW, Parkin IP (2011) The relationship between photocatalytic activity and photochromic state of nanoparticulate silver surface loaded titanium dioxide thin-films. Phys Chem Chem Phys 13(30):13827–13838

    Article  Google Scholar 

  77. Brasse G, Restoin C, Soul D, Blondy JM (2011) Rheology study of silica-zirconia sols for elaboration of silica-zirconia nanostructured optical fibers by inverse dip coating. J Phys Chem C 115(1):248–252

    Article  Google Scholar 

  78. Dewalque J, Cloots R, Mathis F, Dubreuil O, Krins N, Henrist C (2011) TiO2 multilayer thick films (up to 4 mu m) with ordered mesoporosity: influence of template on the film mesostructure and use as high efficiency photoelectrode in DSSCs. J Mater Chem 21(20):7356–7363

    Article  Google Scholar 

  79. Takahashi T, Matsutani A, Shoji D, Nishioka K, Sato M, Isobe T, Nakajima A, Matsushita S (2015) Microfabrication for a polystyrene quadrupole by template-assisted self-assembly. Colloids Surf A 484:75–80

    Article  Google Scholar 

  80. Spotnitz ME, Ryan D, Stone HA (2004) Dip coating for the alignment of carbon nanotubes on curved surfaces. J Mater Chem 14(8):1299–1302

    Article  Google Scholar 

  81. Huang J, Fan R, Connor S, Yang P (2007) One-step patterning of aligned nanowire arrays by programmed dip coating. Angew Chem Int Edit 46(14):2414–2417

    Article  Google Scholar 

  82. Kang TJ, Yoon JW, Kim DI, Kum SS, Huh YH, Hahn JH, Moon SH, Lee HY, Kim YH (2007) Sandwich-type laminated nanocomposites developed by selective dip-coating of carbon nanotubes. Adv Mater 19(3):427–432

    Article  Google Scholar 

  83. Ding DH, Zhou WC, Luo F, Chen ML, Zhu DM (2012) Dip-coating of boron nitride interphase and its effects on mechanical properties of SiCf/SiC composites. Mater Sci Eng A 543:1–5

    Article  Google Scholar 

  84. Qi KH, Daoud WA, Xin JH, Mak CL, Tang WZ, Cheung WP (2006) Self-cleaning cotton. J Mater Chem 16(47):4567–4574

    Article  Google Scholar 

  85. Velasco E, Baldovino-Medrano VG, Gaigneaux EM, Giraldo SA (2016) Development of an efficient strategy for coating TiO2 on polyester-cotton fabrics for bactericidal applications. Topics Catal 59(2–4):378–386

    Article  Google Scholar 

  86. Doganli G, Yuzer B, Aydin I, Gultekin T, Con AH, Selcuk H, Palamutcu S (2016) Functionalization of cotton fabric with nanosized TiO2 coating for self-cleaning and antibacterial property enhancement. J Coat Technol Res 13(2):257–265

    Article  Google Scholar 

  87. Moafi HF, Shojaie AF, Zanjanchi MA (2011) Titania and titania nanocomposites on cellulosic fibers: Synthesis, characterization and comparative study of photocatalytic activity. Chem Eng J 166(1):413–419

    Article  Google Scholar 

  88. Moafi HF, Shojaie AF, Zanjanchi MA (2013) Photoactive behavior of polyacrylonitrile fibers based on silver and zirconium co-doped titania nanocomposites: synthesis, characterization, and comparative study of solid-phase photocatalytic self-cleaning. J Appl Polym Sci 127(5):3778–3789

    Article  Google Scholar 

  89. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Molecular Catal A 244(1–2):160–167. doi:10.1016/j.molcata.2005.08.059

    Article  Google Scholar 

  90. Qi KH, Chen XQ, Liu YY, Xin JH, Mak CL, Daoud WA (2007) Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem 17(33):3504–3508

    Article  Google Scholar 

  91. Wang RH, Wang XW, Xin JH (2010) Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Interfaces 2(1):82–85

    Article  Google Scholar 

  92. Nateghi MR, Shateri-Khalilabad M (2015) Silver nanowire-functionalized cotton fabric. Carbohyd Polym 117:160–168

    Article  Google Scholar 

  93. Zeng C, Wang HX, Zhou H, Lin T (2015) Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Adv 5(75):61044–61050

    Article  Google Scholar 

  94. Liu YY, Wang XW, Qi KH, Xin JH (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460

    Article  Google Scholar 

  95. Yin YJ, Guo N, Wang CX, Rao QQ (2014) Alterable superhydrophobic-superhydrophilic wettability of fabric substrates decorated with ion-TiO2 coating via ultraviolet radiation. Ind Eng Chem Res 53(37):14322–14328

    Article  Google Scholar 

  96. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460

    Article  Google Scholar 

  97. Yoon H, Na SH, Choi JY, Latthe SS, Swihart MT, Al-Deyab SS, Yoon SS (2014) Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil water separation and water purification by graphene. Langmuir 30(39):11761–11769

    Article  Google Scholar 

  98. Karimnezhad H, Rajabi L, Salehi E, Derakhshan AA, Azimi S (2014) Novel nanocomposite Kevlar fabric membranes: fabrication characterization, and performance in oil/water separation. Appl Surf Sci 293:275–286

    Article  Google Scholar 

  99. Wu L, Zhang JP, Li BC, Wang AQ (2014) Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. J Colloid Interface Sci 413:112–117

    Article  Google Scholar 

  100. Li KQ, Zeng XR, Li HQ, Lai XJ, Xie H (2014) Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil. Mater Lett 120:255–258

    Article  Google Scholar 

  101. Zhu XT, Zhang ZZ, Ge B, Men XH, Zhou XY, Xue QJ (2014) A versatile approach to produce superhydrophobic materials used for oil-water separation. J Colloid Interface Sci 432:105–108

    Article  Google Scholar 

  102. Cao YZ, Liu N, Zhang WF, Feng L, Wei Y (2016) One-step coating toward multifunctional applications: oil/water mixtures and emulsions separation and contaminants. Adsorption. ACS Appl Mater Interfaces 8(5):3333–3339

    Article  Google Scholar 

  103. Zhang WF, Lu X, Xin Z, Zhou CL (2015) A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7(46):19476–19483

    Article  Google Scholar 

  104. Kong Y, Liu Y, Xin JH (2011) Fabrics with self-adaptive wettability controlled by “light-and-dark”. J Mater Chem 21(44):17978–17987

    Article  Google Scholar 

  105. Yan L, Li J, Li WJ, Zha F, Feng H, Hu DC (2016) A photo-induced ZnO coated mesh for on-demand oil/water separation based on switchable wettability. Mater Lett 163:247–249

    Article  Google Scholar 

  106. Xu Z, Zhao Y, Wang H, Wang X, Lin T (2015) A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation. Angew Chem Int Edit 54(15):4527–4530

    Article  Google Scholar 

  107. Atwa Y, Maheshwari N, Goldthorpe IA (2015) Silver nanowire coated threads for electrically conductive textiles. J Mater Chem C 3(16):3908–3912

    Article  Google Scholar 

  108. Gan L, Shang S, Yuen CWM, Jiang S-x (2015) Graphene nanoribbon coated flexible and conductive cotton fabric. Compos Sci Technol 117:208–214

    Article  Google Scholar 

  109. Narayanan SC, Karpagam KR, Bhattacharyya A (2015) Nanocomposite coatings on cotton and silk fibers for enhanced electrical conductivity. Fibers Polym 16(6):1269–1275

    Article  Google Scholar 

  110. Tang YJ, Mosseler JA, He ZB, Ni YH (2014) Imparting cellulosic paper of high conductivity by surface coating of dispersed graphite. Ind Eng Chem Res 53(24):10119–10124

    Article  Google Scholar 

  111. Qin WZ, Vautard F, Drzal LT, Yu JR (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplateletsat the fiber-matrix interphase. Compos Part B-Eng 69:335–341

    Article  Google Scholar 

  112. Wang Y, Rouabhia M, Zhang Z (2013) PPy-coated PET fabrics and electric pulse-stimulated fibroblasts. J Mater Chem B 1(31):3789–3796

    Article  Google Scholar 

  113. Hodlur RM, Rabinal MK (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160–165

    Article  Google Scholar 

  114. Jiang SJ, Zhang HB, Song SQ, Ma YW, Li JH, Lee GH, Han QW, Liu J (2015) Highly stretchable conductive fibers from few-walled carbon nanotubes coated on poly(m-phenylene isophthalamide) polymer core/shell structures. ACS Nano 9(10):10252–10257

    Article  Google Scholar 

  115. Hasan MMB, Cherif C, Foisal ABM, Onggar T, Hund RD, Nocke A (2013) Development of conductive coated polyether ether ketone (PEEK) filament for structural health monitoring of composites. Compos Sci Technol 88:76–83

    Article  Google Scholar 

  116. Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2(28):10776–10787

    Article  Google Scholar 

  117. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano lett 10(2):708–714

    Article  Google Scholar 

  118. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano lett 11(7):2905–2911

    Article  Google Scholar 

  119. Xu J, Wu H, Xu C, Huang HT, Lu LF, Ding GQ, Wang HL, Liu DF, Shen GZ, Li DD, Chen XY (2013) Structural engineering for high energy and voltage output supercapacitors. Chem A Eur J 19(20):6451–6458

    Article  Google Scholar 

  120. Wang K, Zhao P, Zhou XM, Wu HP, Wei ZX (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21(41):16373–16378

    Article  Google Scholar 

  121. Gui Z, Zhu HL, Gillette E, Han XG, Rubloff GW, Hu LB, Lee SB (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037–6046

    Article  Google Scholar 

  122. Zhai S, Karahan HE, Wei L, Qian Q, Harris AT, Minett AI, Ramakrishna S, Ng AK, Chen Y (2016) Textile energy storage: structural design concepts, material selection and future perspectives. Energy Storage Mater 3:123–139

    Article  Google Scholar 

  123. Hu LB, La Mantia F, Wu H, Xie X, McDonough J, Pasta M, Cui Y (2011) Lithium-ion textile batteries with large areal mass loading. Adv Energy Mater 1(6):1012–1017

    Article  Google Scholar 

  124. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011

    Article  Google Scholar 

  125. Lee YH, Kim JS, Noh J, Lee I, Kim HJ, Choi S, Seo J, Jeon S, Kim TS, Lee JY, Choi JW (2013) Wearable textile battery rechargeable by solar energy. Nano Lett 13(11):5753–5761

    Article  Google Scholar 

  126. Li SY, Wang Q, Xie WH, Xue S, Hou XY, He DY (2015) DIP-coating process to fabricate SnO2/C nanotube networks as binder-free anodes for lithium ion batteries. Mater Lett 158:244–247

    Article  Google Scholar 

  127. Wei NN, Han T, Deng GZ, Li JL, Du JY (2011) Synthesis and characterizations of three-dimensional ordered gold- nanoparticle-doped titanium dioxide photonic crystals. Thin Solid Films 519(8):2409–241

    Article  Google Scholar 

  128. Fortes LM, Clara Goncalves M, Almeida RM (2011) Flexible photonic crystals for strain sensing. Optical Mater 33(3):408–412

    Article  Google Scholar 

  129. Fortes LM, Goncalves MC, Almeida RM (2009) Processing optimization and optical properties of 3-D photonic crystals. J Non-Cryst Solids 355(18-21):1189–1192

    Article  Google Scholar 

  130. Zhukovskyi M, Sanchez-Botero L, McDonald MP, Hinestroza J, Kuno M (2014) Nanowire-functionalized cotton textiles. ACS Appl Mater Interfaces 6(4):2262–2269

    Article  Google Scholar 

  131. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC (2015) Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohyd Polym 130:227–232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoning Tang or Xiong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Yan, X. Dip-coating for fibrous materials: mechanism, methods and applications. J Sol-Gel Sci Technol 81, 378–404 (2017). https://doi.org/10.1007/s10971-016-4197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4197-7

Keywords

Navigation