Skip to main content

Advertisement

Log in

Synthesis of visible light-responsive cobalt-doped TiO2 nanoparticles with tunable optical band gap

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Visible light-responsive photocatalysts are the most promising candidates for green bioremediation processes that will degrade toxic organic industrial waste into harmless compounds. Among the photocatalysts, TiO2 is best suited for large-scale photo-induced bioremediation processes mainly because of low cost and abundance. The major obstacle in its utilization as photocatalyst is its poor response to sunlight due to its wide energy band gap. This article reports sol–gel synthesis of pristine and cobalt-doped TiO2 nanoparticles (TNPs). Titanium (IV) isopropoxide is hydrolyzed and condensed into amorphous titanium dioxide gel by water/ethanol under acidic conditions. Irrespective of the Co concentration, TNPs always crystallize into anatase phase when calcine at 500 °C. No signature of other isomorphous phases, i.e., rutile or brookite, is detected. The optical band gap of pristine (0 % Co doped) TNPs is 3.03 eV (λ = 409 nm), which decreases up to 1.93 eV (λ = 642 nm) when Co concentration in TiO2 matrix increases from 0 to 2 %. Co(+2) substitution at Ti(+4) site generates additional oxygen vacancies in the TiO2 unit cell, which introduces extra energy levels in the forbidden band that reduces the indirect energy band gap of TNPs. Co doping in TNPs makes them sensitive to visible radiation, and hence, their photoresponse is expected to be better under sunlight than pristine bulk titania, which is active only in the UV region of the electromagnetic spectrum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Salvador A, Pascual-Marti MC, Adell JR, Requeni A, March JG (2000) J Pharm Biomed Anal 22:301–306

    Article  Google Scholar 

  2. Braun JH, Baidins A, Marganski RE (1992) Prog Org Coat 20:105–138

    Article  Google Scholar 

  3. Yuan SA, Chen WH, Hu SS (2005) Mater Sci Eng C 25:479–485

    Article  Google Scholar 

  4. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  5. Tada H, Tanaka M (1997) Langmuir 13:360–364

    Article  Google Scholar 

  6. Bokare A, Pai M, Athawale AA (2013) Sol Energy 91:111–119

    Article  Google Scholar 

  7. Zhao H, Liu L, Andinobc JM, Li Y (2013) J Mater Chem A 1:8209–8216

    Article  Google Scholar 

  8. Niu Y, Xing M, Tian B, Zhang J (2012) Appl Catal B 115–116:253–260

    Article  Google Scholar 

  9. Gratzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  10. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  Google Scholar 

  11. Hoffmann MR, Martin ST, Choi W, Bahneman DW (1995) Chem Rev 95:69–96

    Article  Google Scholar 

  12. Coronado DR, Gattorno GR, Pesqueira MEE, Cab C, Coss RD, Osbam G (2008) Nanotechnology 19:145605

    Article  Google Scholar 

  13. Ismail AA, Bahnemann DW (2011) J Mater Chem 21:11686–11707

    Article  Google Scholar 

  14. Pal M, Serrano JG, Santiago P, Pal U (2007) J Phys Chem C 111:96–102

    Article  Google Scholar 

  15. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) J Phys Chem Solids 63:1909–1920

    Article  Google Scholar 

  16. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) J Am Chem Soc 135:9995–9998

    Article  Google Scholar 

  17. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  18. Ricci PC, Carbonaro CM, Lehmann AG, Congiu F, Puxeddu B, Cappelletti G, Spadavecchia F (2013) J Alloys Compd 561:109–113

    Article  Google Scholar 

  19. Dua J, Zhao G, Shi Y, Yang H, Li Y, Zhu G (2013) Appl Surf Sci 273:278–286

    Article  Google Scholar 

  20. Zhang L, Tse MS, Tan OK, Wang YX, Han M (2013) J Mater Chem A 1:4497–4507

    Article  Google Scholar 

  21. Biswas A, Corani A, Kathiravan A, Infahsaeng Y, Yartsev A, Sundstrom V, De S (2013) Nanotechnology 24:195601

    Article  Google Scholar 

  22. Radoicic M, Saponjic Z, Jankovic IA, Ciric-Marjanovic G, Ahrenkiel SP, Comor MI (2013) Appl Catal B 136–137:133–139

    Article  Google Scholar 

  23. Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11

    Article  Google Scholar 

  24. Sayilkan F, Asilturk M, Sayilkan H, Onal Y, Akarsu M, Arpac E (2005) Turk J Chem 29:697–706

    Google Scholar 

  25. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  26. Harris MT, Singhal A (1997) J Sol–Gel Sci Tech 8:41–47

    Google Scholar 

  27. Hamadanian M, Vanani AR, Majedi A (2010) J Iran Chem Soc 7:S52–S58

    Article  Google Scholar 

  28. Choudhury B, Choudhury A (2012) J Lumin 132:178–184

    Article  Google Scholar 

  29. Cullity BD, Stock SR (2002) Elements of X-ray Diffraction, 3rd edn. Addison-Wesley Publishing Company Inc., USA

    Google Scholar 

  30. Choudhury B, Dey M, Choudhury A (2013) Int Nano Lett 3:25–32

    Article  Google Scholar 

  31. Das K, Sharma SN, Kumar M, De SK (2009) J Phys Chem C 113:14783–14792

    Article  Google Scholar 

  32. Rajkumar N, Ramachandran K (2011) IEEE Trans Nanotechnol 10:513–519

    Article  Google Scholar 

  33. Fu Y, Du H, Zhang S, Huang W (2005) Mater Sci Eng A 403:25–31

    Article  Google Scholar 

  34. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Adv Funct Mater 21:3744–3752

    Article  Google Scholar 

  35. Hench LL, West JK (1990) Chem Rev 90:33–72

    Article  Google Scholar 

  36. Lee JD (1998) Concise inorganic chemistry, 5th edn. Wiley, India

    Google Scholar 

  37. Smith AM, Nie S (2010) Acc Chem Res 43:190–200

    Article  Google Scholar 

  38. Liu G, Yang HG, Wang X, Cheng L, Lu H, Wang L, Lu GQ, Cheng HM (2009) J Phys Chem C 113:21784–21788

    Article  Google Scholar 

  39. Sahu M, Biswas P (2011) Nanoscale Res Lett 6:441–454

    Article  Google Scholar 

  40. Pal M, Pal U, Jimenez J, Rodriguez F (2012) Nanoscale Res Lett 7:1–12

    Article  Google Scholar 

  41. Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2004) Appl Catal B 57:23–30

    Article  Google Scholar 

  42. Bae SW, Borse PH, Hong SJ, Jang JS, Lee JS (2007) J Korean Phys Soc 51:S22–S26

    Article  Google Scholar 

  43. Kiriakidis G, Binas V (2014) J Korean Phys Soc 65:297–302

    Article  Google Scholar 

  44. Kuljanin-Jakovljevic J, Radoicic M, Radetic T, Konstantinovic Z, Saponjic ZV, Nedeljkovic J (2009) J Phys Chem C 113:21029–21033

    Article  Google Scholar 

  45. Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P (2014) Appl Nanosci. doi:10.1007/s13204-014-0337-y

    Google Scholar 

  46. Bryan JD, Heald SM, Chambers SA, Gamelin DR (2004) J Am Chem Soc 126:11640–11647

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Council of Scientific and Industrial Research, New Delhi [Scheme No. 03(1226)/12/ERM-II], and University Grants Commission, New Delhi [Scheme No. F. No. 42-850/2013 (SR)], for the financial support. Authors also acknowledge SAIF, IITB for extending transmission electron microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Chudasama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, C., Pandey, O.P. & Chudasama, B. Synthesis of visible light-responsive cobalt-doped TiO2 nanoparticles with tunable optical band gap. J Sol-Gel Sci Technol 75, 424–435 (2015). https://doi.org/10.1007/s10971-015-3715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3715-3

Keywords

Navigation