Skip to main content
Log in

Sol–gel technology and template synthesis in thin gelatin films

  • Review Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Processes of sol–gel technology of template synthesis of 3d-element metal macrocyclic complexes that occurs in thin films of metalhexacyanoferrate(II) gelatin-immobilized matrix implants under their contact with water solutions containing various (N,O,S)-donor atomic and (C=O) containing organic compounds, have been discussed. It was noted that, in a series of cases, sol–gel technology of template synthesis in the given specific conditions allows to realize such metal macrocyclic complexes formation processes that are not typical at the complexing in solutions or solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas AL (1990) Phthalocyanines. Research & applications. CRC Press, London

    Google Scholar 

  2. Hoss R, Fogtle F (1994) Angew Chem 106:389–398

    Google Scholar 

  3. Garnovskii AD, Kharisov BI (eds) (2003) Synthetic coordination and organometallic chemistry. Marsel-Dekker, New York-Basel

    Google Scholar 

  4. Vigato PA, Tamburini S (2004) Coord Chem Revs 248:1717–2128

    Google Scholar 

  5. Gerbeleu NV, Arion VB (1990) Template synthesis of macrocyclic compounds. Shtiintsa, Kishineu

    Google Scholar 

  6. Wird AG, Courts A (eds) (1977) The science and technology of gelatin. Academic Press, New York

    Google Scholar 

  7. Kargin VA (ed) (1972) Encyclopedia of polymers, vol 1. Soviet Encyclopedia, Moscow

    Google Scholar 

  8. Kabanov VA (ed) (1977) Encyclopedia of polymers, vol 3. Soviet Encyclopedia, Moscow

    Google Scholar 

  9. Ramachandran GN (1967) Treatise on collagen, vol I. Academic, New York

    Google Scholar 

  10. Boedker H, Doty P (1954) J Phys Chem 58:968–983

    Google Scholar 

  11. James TH, Mees CE (1972) The theory of the photographic process. Macmillan, New York

    Google Scholar 

  12. James TH (1977) The theory of the photographic process. Macmillan, New York

    Google Scholar 

  13. Cox RJ (ed) (1972) Photographic gelatin, vol I. Academic Press, London

    Google Scholar 

  14. Cox RJ (ed) (1976) Photographic gelatin, vol I. Academic Press, London

    Google Scholar 

  15. Veis A, Anesey J, Cohen J (1961) Arch Biochem Biophys 94:20–31

    Google Scholar 

  16. Veis A, Drake MP (1963) J Biol Chem 238:2003–2011

    Google Scholar 

  17. Rich A, Crick FHC (1955) Nature 176:915–916

    Google Scholar 

  18. Cowan PM, McGavin S, North ACT (1955) Nature 176:1062–1066

    Google Scholar 

  19. Ferry JD (1948) Advances in protein chemistry, vol 4. Academic Press, New York

    Google Scholar 

  20. Chen JM, Kung CE, Feairheller SE, Brown EM (1991) J Protein Chem 10:535–552

    Google Scholar 

  21. Fridman R, Fuerst TR, Bird RE, Hoyhtya M, Oelkuct M, Kraus S, Komarek D, Liotta LA, Berman ML, Stetler-Stevenson WG (1992) J Biol Chem 267:15398–15405

    Google Scholar 

  22. Banyai L, Tordai H, Patthy LJ (1996) J Biol Chem 271:12003–12008

    Google Scholar 

  23. Tordai H, Patthy L (1999) Eur J Biochem 259:513–518

    Google Scholar 

  24. Caldararu H, Timmins GS, Gilbert BC (1999) Phys Chem Chem Phys 1:5689–5695

    Google Scholar 

  25. Phillips GO, Williams PA (eds) (2000) Handbook of hydrocolloids. Woodhead, London

    Google Scholar 

  26. Lin W, Yan L, Mu C, Li W, Zhang M, Zhu O (2002) Polym Int 51:233–238

    Google Scholar 

  27. Pickford AR, Potts JR, Bright JR, Han I, Campbell ID (1997) Structure 5:359–370

    Google Scholar 

  28. Gehrmann ML, Douglas JT, Banyai L, Tordai H, Patthy L, Llinas M (1994) J Biol Chem 279:46921–46930

    Google Scholar 

  29. Trexler M, Briknarova K, Gehrmann M, Llinas M, Patthy L (2003) J Biol Chem 278:12241–12246

    Google Scholar 

  30. Groome RJ, Clegg FG (1965) Photographic gelatin. Focal Press, London, pp 35–40

    Google Scholar 

  31. Pratt WB, Hackney JF (1971) Biochemistry 10:3002–3008

    Google Scholar 

  32. Hulmes DJS, Miller A, Parry DAD (1973) J Mol Biol 79:137–148

    Google Scholar 

  33. Ramachandran GN, Kartha G (1955) Nature 176:593–597

    Google Scholar 

  34. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. Wiley, Weinheim

    Google Scholar 

  35. Gerbeleu NV, Arion VB, Burgess J (1999) Template synthesis of macrocyclic compounds. Wiley, Weinheim

    Google Scholar 

  36. Garnovskii AD, Vasil’chenko VS, Garnovskii DA (2000) Contemporary topics of the synthesis of metal complexes: the main ligands and techniques. LaPO, Rostov

    Google Scholar 

  37. Mikhailov OV (1995) Russ Chem Rev 64:657–671

    Google Scholar 

  38. Mikhailov OV (1997) Revs Inorg Chem 18:287–332

    Google Scholar 

  39. Mikhailov OV (2005) Gelatin_immobilized metal complexes. Scientific World, Moscow

    Google Scholar 

  40. Mikhailov OV (1998) Russ J Gen Chem 68:827–829

    Google Scholar 

  41. Mikhailov OV, Budnikov GK (1989) Bull Chem Soc Japan 62:4016–4020

    Google Scholar 

  42. Mikhailov OV, Polovnyak VK (1990) Monatsh Chem 121:601–607

    Google Scholar 

  43. Mikhailov OV (1991) Monatsh Chem 122:595–603

    Google Scholar 

  44. Mikhailov OV, Khamitova AI, Kazymova MA (1998) J Soc Photogr Sci Technol Japan 61:387–393

    Google Scholar 

  45. Mikhailov OV, Polovnyak VK (1991) J Imaging Sci 35:258–262

    Google Scholar 

  46. Mikhailov OV (1992) Soviet J Coord Chem 18:1008–1017

    Google Scholar 

  47. Mikhailov OV, Khamitova AI (1998) Mendeleev Commun 3:96–97

    Google Scholar 

  48. Mikhailov OV, Khamitova AI (1998) Russ J Phys Chem 72:921–925

    Google Scholar 

  49. Mikhailov OV, Khamitova AI, Shigapova LS, Busygina TE (1999) Transit Met Chem 24:503–510

    Google Scholar 

  50. Mikhailov OV, Khamitova AI, Morozov VI (2000) Heterocycl Commun 6:137–142

    Google Scholar 

  51. Mikhailov OV (2001) Int J Inorg Mater 3:1053–1061

    Google Scholar 

  52. Mikhailov OV, Khamitova AI (1999) Russ J Coord Chem 25:795–799

    Google Scholar 

  53. Mikhailov OV (2000) Transit Met Chem 25:552–558

    Google Scholar 

  54. Mikhailov OV, Khamitova AI (1998) Russ J Gen Chem 68:1187–1193

    Google Scholar 

  55. Mikhailov OV, Khamitova AI (2000) Transit Met Chem 25:26–31

    Google Scholar 

  56. Mikhailov OV, Khamitova AI (1998) Russ J Coord Chem 24:807–810

    Google Scholar 

  57. Mikhailov OV, Chachkov DV (2009) J Coord Chem 62:1058–1066

    Google Scholar 

  58. Mikhailov OV (2002) Russ J Gen Chem 72:1525–1530

    Google Scholar 

  59. Mikhailov OV (2002) Russ J Coord Chem 28:352–357

    Google Scholar 

  60. Mikhailov OV (2002) Russ J Coord Chem 28:32–38

    Google Scholar 

  61. Mikhailov OV (2001) Russ J Gen Chem 71:1676–1681

    Google Scholar 

  62. Mikhailov OV, Kazymova MA, Shumilova TA, Vafina LR (2000) Heterocycl Commun 6:357–362

    Google Scholar 

  63. Mikhailov OV, Chachkov DV (2010) J Coord Chem 63:4309–4318

    Google Scholar 

  64. Mikhailov OV (2008) Russ J Gen Chem 78:82–89

    Google Scholar 

  65. Mikhailov OV, Kazymova MA (2008) Transit Met Chem 33:523–527

    Google Scholar 

  66. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE, Mannafov TG (2003) Transit Met Chem 28:592–594

    Google Scholar 

  67. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE (2003) Transit Met Chem 28:665–667

    Google Scholar 

  68. Mikhailov OV, Kazymova MA, Shumilova TA (2003) Heterocycl Commun 9:61–64

    Google Scholar 

  69. Mikhailov OV, Kazymova MA, Shumilova TA (2008) Russ J Gen Chem 78:258–263

    Google Scholar 

  70. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE (2009) Russ J Gen Chem 79:24–30

    Google Scholar 

  71. Mikhailov OV, Kazymova MA, Chachkov DV (2008) Macroheterocycles 1:90–97

    Google Scholar 

  72. Chachkov DV, Mikhailov OV (2011) Russ J Inorg Chem 56:1935–1942

    Google Scholar 

  73. Mikhailov OV (2001) Heterocycl Commun 7:79–82

    Google Scholar 

  74. Mikhailov OV, Chachkov DV (2009) Macroheterocycles 2:271–275

    Google Scholar 

  75. Chachkov DV, Mikhailov OV (2012) Russ J Inorg Chem 57:981–986

    Google Scholar 

  76. Mikhailov OV, Chachkov DV (2013) Russ J Inorg Chem 58:548–553

    Google Scholar 

  77. Mikhailov OV, Khamitova AI, Morozov VI (2001) Int J Inorg Mater 3:161–167

    Google Scholar 

  78. Mikhailov OV, Khamitova AI, Mingalieva LS (2001) Heterocycl Commun 7:359–363

    Google Scholar 

  79. Mikhailov OV, Khamitova AI (2000) Russ J Coord Chem 26:804–808

    Google Scholar 

  80. Mikhailov OV, Khamitova AI (1998) Russ J Coord Chem 24:629–633

    Google Scholar 

  81. Mikhailov OV, Khamitova AI (1999) Russ Chem Bull 48:1975–1981

    Google Scholar 

  82. Mikhailov OV, Khamitova AI (1997) Russ J Gen Chem 67:1913–1924

    Google Scholar 

  83. Mikhailov OV, Kazymova MA, Shumilova TA (2007) Transit Met Chem 2:1056–1060

    Google Scholar 

  84. Mikhailov OV, Khamitova AI, Kazymova MA (2005) Transit Met. Chem 30:22–26

    Google Scholar 

  85. Mikhailov OV, Kazymova MA, Shumilova TA, Chmutova GA, Solovieva SE (2005) Transit Met Chem 30:18–21

    Google Scholar 

  86. Kazymova MA, Shumilova TA, Mikhailov OV, Solov’eva SE (2008) Russ J Coord Chem 34:102–105

    Google Scholar 

  87. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE (2004) Transit Met Chem 29:732–736

    Google Scholar 

  88. Kazymova MA, Makarova LA, Mikhailov OV, Shumilova TA (2010) International symposium on advances sciences in organic chemistry (Miskhor, Crimea, June 21–25). Abstracts, p. C-83

  89. Batteraby AR (1986) Acc Chem Res 19:147–152

    Google Scholar 

  90. Lawrance JA, Rossignoli M, Skelton BW, White AH (1987) Austral J Chem 40:1441–1449

    Google Scholar 

  91. Comba P, Curtis NF, Lawrance JA (1988) J Chem Soc Dalton Trans 9:497–502

  92. Rosokha SV, Lampeka YD, Maloshtan IM (1993) J Chem Soc Dalton Trans 14:631–636

  93. Tsymbal LV, Rosokha SV, Lampeka YD (1995) J Chem Soc, Dalton Trans 16:2633–2637

    Google Scholar 

  94. Fabbrizzi L, Liccelli M, Manotti-Lanfredi AM, Vassali O, Ugozzoli F (1996) Inorg Chem 35:1582–1589

    Google Scholar 

  95. Nanda KK, Addison AW, Butcher RT, McDevitt MR, Rao TN, Sinn E (1997) Inorg Chem 36:134–135

    Google Scholar 

  96. Rudolf M, Dautz S, Jager EG (2000) J Am Chem Soc 122:10821–10830

    Google Scholar 

  97. Trommel JS, Marzilli LG (2001) Inorg Chem 40:4374–4383

    Google Scholar 

  98. Lu X, Geng Z, Wang Y, Lu B, Kang J (2002) Synth React Inorg Metal Org Chem 32:949–966

    Google Scholar 

  99. Garcia KW, Basinger J, Williams S, Hu C, Wagenknecht PS, Nathan LC (2003) Inorg Chem 42:4885–4890

    Google Scholar 

  100. Dong Guo, Chun-qi Qian, Chun-ying Duan, Ke-liang Pang, Qing-jin Meng (2003) Inorg Chem 42:2024–2030

    Google Scholar 

  101. Singh AK, Singh R, Saxena P (2004) Transit Met Chem 29:867–869

    Google Scholar 

  102. Salavati-Niasari M (2004) Inorg Chem Commun 7:698–700

    Google Scholar 

  103. Ali Khan T, Ghani SS, Shakir M, Tabassum S (2005) Synth React Inorg Met Org Nano Met Chem 35:509–513

  104. Salavati-Niasari M, Davar F (2006) Inorg Chem Commun 9:175–179

    Google Scholar 

  105. Judele R, Dix MJ, Laschat S, Baro A, Nimtz M, Menzel D, Schoenes J, Doll K, Zwicknagl G, Niemeyer M (2008) Z Anorg Allgem Chem 634:299–310

    Google Scholar 

  106. Fuliang Z, Liang S (2010) J Chem Crystallogr 40:681–685

    Google Scholar 

Download references

Acknowledgments

Russian Foundation for Basic Research (RFBR) is acknowledged for the financial support of this research (Grant No. 09-03-97001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Mikhailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, O.V. Sol–gel technology and template synthesis in thin gelatin films. J Sol-Gel Sci Technol 72, 314–327 (2014). https://doi.org/10.1007/s10971-014-3468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3468-4

Keywords

Navigation