Skip to main content
Log in

Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic nano-Fe-embedded BaFe12O19 (NFEB) porous microfibers with diameters about 1–5 μm were prepared by the organic gel-thermal selective reduction process. The NFEB porous microfibers were formed after reduction of the precursor Fe2O3–BaFe12O19 microfibers at 350 °C for 1 h. The precursor Fe2O3–BaFe12O19 microfibers were obtained by calcination of the gel fibers. In the NFEB porous microfibers, the cubic α-Fe particles with size about 300 nm are homogeneously embedded in the hexagonal plate-like barium ferrite and the pore sizes are around 50–150 nm. The magnetic properties of these NFEB porous microfibers are influenced by the mass ratio of α-Fe/BaFe12O19 and reduction conditions. The NFEB porous microfibers with the designed soft (α-Fe)/hard (BaFe12O19) mass ratio of 1/2 obtained at 375 °C for 1 h have the enhanced saturation magnetization (M sh ) of 73.9 Am2 kg−1, coercivity (H c ) of 81.6 kAm−1 and remanence (M r ) of 34.2 Am2 kg−1, compared to the single phase of BaFe12O19 and α-Fe microfibers. This enhanced magnetic properties can be attributed to the exchange-coupling interactions. The NFEB porous microfibers exhibit a higher BSA adsorption capability than each single phase of α-Fe microfibers and BaFe12O19 microfibers. The BSA adsorption is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Article  CAS  Google Scholar 

  2. Nama J-H, Joo Y-H, Lee J-H, Chang JH, Cho JH, Chun MP, Kim B (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321:1389–1392

    Article  Google Scholar 

  3. Mcclellan SJ, Franses EI (2003) Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids Surf B Biointerfaces 28:63–75

    Article  CAS  Google Scholar 

  4. Valero Vidal C, Olmo Juan A, Igual Munoz A (2010) Adsorption of bovine serum albumin on CoCrMo surface: effect of temperature and protein concentration. Colloids Surf B Biointerfaces 80:1–11

    Article  CAS  Google Scholar 

  5. Menaa B, Menaa F, Aiolfi-Guimaraes C, Sharts O (2010) Silica-based nanoporous sol–gel glasses: from bioencapsulation to protein folding studies. Int J Nanotechnol 7:1–45

    Article  CAS  Google Scholar 

  6. Menaa B, Torres C, Herrero M, Rives V, Gilbert ARW, Eggers DK (2008) Protein adsorption onto organically modified silica glass leads to a different structure than sol–gel encapsulation. Biophys J 95:L51–L53

    Article  CAS  Google Scholar 

  7. Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S-J, Cho E-J, Yoon H-G, Suh J-S, Cheon J-W (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–100

    Article  CAS  Google Scholar 

  8. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed Nanobiotechnol 2:291–304

    Article  CAS  Google Scholar 

  9. Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci 271:277–283

    Article  CAS  Google Scholar 

  10. Liang HF, Wang ZC (2010) Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles. Mater Chem Phys 124:964–969

    Article  CAS  Google Scholar 

  11. Tang I-M, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-On W (2011) Biomagnetic of apatite-coated cobalt ferrite: a core-shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett 6:9–19

    Article  Google Scholar 

  12. Skomcki R, Coey JMD (1993) Giant energy product in nanostructure two-phase magnets. Phys Rev B 48:15812–15817

    Article  Google Scholar 

  13. Druzhinina T, Hoeppener S, Schubert US (2009) On the synthesis of carbon nanofibers and nanotubes by microwave irradiation: parameters, catalysts, and substrates. Adv Funct Mater 19:2819–2826

    Article  CAS  Google Scholar 

  14. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  15. Cheng JY, Zhang F, Chuang VP, Mayes AM, Ross CA (2006) Self-assembled one-dimensional nanostructure arrays. Nano Lett 6:2099–2103

    Article  CAS  Google Scholar 

  16. Graeser M, Bognitzki M, Massa W, Pietzonka C, Greiner A, Wendorff JH (2007) Magnetically anisotropic cobalt and iron nanofibers via electrospinning. Adv Mater 19:4244–4247

    Article  CAS  Google Scholar 

  17. Song FZ, Shen XQ, Liu MQ, Xiang J (2010) Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement. J Colloid Interface Sci 354:413–416

    Article  Google Scholar 

  18. Geaney H, Dickinson C, Barrett CA, Ryan KM (2011) High density germanium nanowire growth directly from copper foil by self-induced solid seeding. Chem Mater 23:4838–4843

    Article  CAS  Google Scholar 

  19. Zhu YQ, Kroto HW, Walton DRM (2002) A systematic study of ceramic nanostructures generated by arc discharge. Phys Lett 365:457–463

    CAS  Google Scholar 

  20. Kohler D, Schneider M, Krüger M, Lehr C-M, Möhwald H, Wang DY (2011) Template-assisted polyelectrolyte encapsulation of nanoparticles into dispersible, hierarchically nanostructured microfibers. Adv Mater 23:1376–1379

    Article  CAS  Google Scholar 

  21. Cojocaru P, Magagnin L, Gomez E, Vallés E (2011) Nanowires of NiCo/barium ferrite magnetic composite by electrodeposition. Mater Lett 65:2765–2769

    Article  CAS  Google Scholar 

  22. Guo LP, Shen XQ, Song FZ, Liu MQ, Zhu YW (2011) Characterization and magnetic exchange observation for CoFe2O4-CoFe2 nanocomposite microfibers. J Sol–Gel Sci Technol 58:524–529

    Article  CAS  Google Scholar 

  23. Song FZ, Shen XQ, Xiang J, Zhu YW (2010) Characterization and magnetic properties of BaxSr1−xFe12O19 (x = 0−1) ferrite hollow fibers via gel-precursor transformation process. J Alloy Compd 50:297–301

    Article  Google Scholar 

  24. Zhang YC, Ye WN, Yang ZZ, Lu CJ, Xia LH (2011) Effect of excess Pb on formation of perovskite-type 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 powders synthesized through a sol–gel process. J Mater Sci Mater Electron 22:91–95

    Article  CAS  Google Scholar 

  25. Almeida RM, Christensen EE (1997) Crystallization behaviour of SiO2–TiO2 sol–gel thin films. J Sol–Gel Sci Technol 8:409–413

    CAS  Google Scholar 

  26. Bouna L, Rhouta B, Amjoud M, Maury F, Lafont M-C, Jada A, Senocq F, Daoudi L (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52:301–311

    Article  CAS  Google Scholar 

  27. Pal M, Bid S, Pradhan SK, Nath BK, Das D, Chakravorty D (2004) Synthesis of nanocomposites comprising iron and barium hexaferrites. J Magn Magn Mater 269:42–47

    Article  CAS  Google Scholar 

  28. Pan BF, Gao F, Gu HC (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. J Colloid Interface Sci 284:1–6

    Article  CAS  Google Scholar 

  29. Barbakow F, Lutz F, Weld T (1992) A critical comparison of dentifrice abrasion scores on dentine recorded by gravimetric and radiotracer methods. J Dent 20:283–286

    Article  CAS  Google Scholar 

  30. Martinsen ØG, Grimnes S, Nilsen JK, Tronstad C, Jang W, Kim H, Shin K, Naderi M, Thielmann F (2008) Gravimetric method for in vitro calibration of skin hydration measurements. IEEE Trans Biomed Eng 55:728–732

    Article  Google Scholar 

  31. Roy D, Shivakumara C, Anil Kumar PS (2009) Observation of the exchange spring behavior in hard-soft-ferrite nanocomposite. J Magn Magn Mater 321:L11–L14

    Article  CAS  Google Scholar 

  32. Song FZ, Shen XQ, Liu MQ, Xiang J (2011) Preparation and magnetic properties of SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers via sol–gel process. Mater Chem Phys 126:791–796

    Article  CAS  Google Scholar 

  33. Moon KW, Cho SG, Choa YH, Kim KH, Kim J (2007) Synthesis and magnetic properties of nano Ba-hexaferrite/NiZn ferrite composites. Phys Status Solidi A 204:4141–4144

    Article  CAS  Google Scholar 

  34. Roy D, Anil Kumar PS (2009) Enhancement of (BH) max in a hard-soft-ferrite nanocomposite using exchange spring mechanism. J Appl Phys 106:73902–73906

    Article  Google Scholar 

  35. Song FZ, Shen XQ, Liu MQ, Xiang J (2012) Microsturcture, magnetic properties and exchange-coupling interactions for one-dimensional soft/hard nanofibers. J Solid State Chem 185:31–36

    Article  CAS  Google Scholar 

  36. Gao RW, Feng WC, Liu HQ, Wang B, Han GB, Zhang P, Li H (2003) Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials. J Appl Phys 94:664–668

    Article  CAS  Google Scholar 

  37. Shen JF, Shi M, Yan B, Ma HW, Li N, Hua YZ, Ye MX (2010) Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf B 81:434–438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103227110006) and the Jiangsu Province’s Postgraduate Cultivation and Innovation Projects (Grant No. CX10B-257Z, CXZZ11_0557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Liu, R., Shen, X. et al. Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process. J Sol-Gel Sci Technol 63, 8–15 (2012). https://doi.org/10.1007/s10971-012-2755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2755-1

Keywords

Navigation