Skip to main content
Log in

Thermal activation of polyethylene@silica particles: towards ceramic surfactants

  • Original Papar
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The fabrication of “switch-on” amphiphilic submicrometer hybrid particles of cross-linked polyethylene (XPE)@silica is described. The synthesis of the particles is based on the simultaneous cross-linking of PE and the polycondensation of tetraethoxysilane in hot, surfactant-stabilized O/W micelles. Thermal activation of the particles results in particles with amphiphilic behavior. It is proposed that the thermal activation triggers partial phase-separation which pushes some of the PE chain to the surface, in a heterogeneous way. By this, on each particle two halves can be identified which differ in their degree of hydrophobicity (“Janus” structure), thus giving rise to the surfactant activity. The particles were intensively characterized before and after the thermal activation and their amphiphilic behavior was demonstrated. By the approach described in the paper it is in principle possible to design a library of functionalities out of a single surface active agent species. This was demonstrated by the thermal activation of functionalized composite particles of dyes@XPE@silica and of the triple hybrid Ag@XPE@silica. Full material characterization is provided, including SEM, TGA, surface area analysis, antibacterial tests and zeta potential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bourgeat-Lami E (2007) Hybrid organic/inorganic particles, in hybrid materials: synthesis, characterization, and applications. Weinheim, Germany

    Google Scholar 

  2. Wegner G, Demir MM, Faatz M, Gorna K, Munoz-Espi R, Guillemet B, Groehn F (2007) Macromol Res 15:95

    Article  CAS  Google Scholar 

  3. Sun XQ, Chen CM, Wang F (2010) Optica Applicata 40(3):737–745

    CAS  Google Scholar 

  4. Xu H, Yan F, Monson EE, Kopelman R (2003) J. Biomedical Mater Res PART A 66A(4):870–879

    Article  CAS  Google Scholar 

  5. Watanabe M, Tamai T (2006) J Polym Sci PART A Polym Chem 44(16):4736–4742

    Article  CAS  Google Scholar 

  6. Ramsden W (1903) Proc R Soc Lond 72:156–164

    Article  CAS  Google Scholar 

  7. Pickering SU (1907) J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  8. De Gennes PG (1992) Rev Mod Phys 64:645–648

    Article  Google Scholar 

  9. Walther Andreas HE, Mu¨ller A (2008) Soft Matter 4:663–668

    Article  Google Scholar 

  10. Faria J, Ruiz MP, Resasco DE (2010) Adv Synth Catal 352(14–15):2359–2364

    Article  CAS  Google Scholar 

  11. Tanaka T, Okayama M, Minami H, Okubo M (2010) Langmuir 26(14):11732–11736

    Article  CAS  Google Scholar 

  12. Endresa KT, Beck-Broichsittera M, Samsonovaa O, Renettea T, Kissel TH (2011) Biomaterials 32(30):7721–7731

    Article  Google Scholar 

  13. Teo BM, Suh Su K, Hatton TA, Ashokkumar M, Grieser F (2011) Langmuir 27(1):30–33

    Article  CAS  Google Scholar 

  14. Vilain C, Goettmann F, Moores A, Le Floch P, Sanchez C (2007) J Mater Chem 17:3509–3514

    Article  CAS  Google Scholar 

  15. Elimelech H, Nedelec JM, Babonneau F, Avnir D (2010) J Mater Chem 20:9515–9522

    Article  CAS  Google Scholar 

  16. Sertchook H, Avnir D (2003) Chem Mater 15:1690–1694

    Article  CAS  Google Scholar 

  17. Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Chem Mater 17:258–263

    Article  CAS  Google Scholar 

  18. Sertchook H, Elimelech H, Avnir D (2005) Chem Mater 17:4711–4716

    Article  CAS  Google Scholar 

  19. Sertchook H, Elimelech H, Makarov C et al (2007) J Am Chem Soc 129(1):98–108

    Article  CAS  Google Scholar 

  20. Makarov C, Khalfin RL, Makarov V, Cohen Y, Sertchook H, Elimelech H, Avnir D (2007) Polymer Adv Tech 18:712–719

    Article  CAS  Google Scholar 

  21. Fucs I, Avnir D, master thesis, Hebrew University

  22. Elimelech H, Avnir D (2008) Chem Mater 20(6):2224–2227

    Article  CAS  Google Scholar 

  23. Zalzberg L, Avnir D (2008) J Sol-Gel Technol 48:47–50

    Article  CAS  Google Scholar 

  24. Elimelech H, Avnir D (2012) RSC Adv 2(3):863–869

    Article  Google Scholar 

  25. Naor H, Shuster M, Avnir D (2011) J Sol-Gel Sci Tech 59(1):194–203

    Article  CAS  Google Scholar 

  26. Wilhelm P, Stephan D (2006) J Colloid Interface Sci 293:88

    Article  CAS  Google Scholar 

  27. Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Adv Mater 22:1060–1071

    Article  CAS  Google Scholar 

  28. Avnir D, Kaufman VR, Reisfeld R (1985) J Non-Cryst Solids 74(2–3):395–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NOFAR program for applied academic research in biotechnology and nano-technology of the Israel Ministry of Trade and Industry. Special thanks are due to Ms. Evgenia Blayvas and the staff at the Center of Nanoscience and Nanotechnology at the Hebrew University, and to Dr. Michael Shuster from Carmel Olefins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Avnir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naor, H., Elimelech, H. & Avnir, D. Thermal activation of polyethylene@silica particles: towards ceramic surfactants. J Sol-Gel Sci Technol 65, 74–82 (2013). https://doi.org/10.1007/s10971-012-2702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2702-1

Keywords

Navigation