Skip to main content
Log in

Enhanced removal of U(VI) from aqueous solution by chitosan-modified zeolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A typical type of natural zeolite(Z) modified with chitosan was applied to remove U(VI) from aqueous solution. Batch experiments were performed to investigate effects of pH, initial U(VI) concentration and contact time. Results show that chitosan-modified zeolite (CZ) exhibited enhanced adsorption capacity for U(VI) and rapider adsorption kinetics than Z. The optimal pH ranges from 5 to 7. U(VI) adsorption data of Z and CZ could be described by pseudo-first order kinetic model and Langmuir isotherm model. Adsorption mechanism of U(VI) on Z and CZ was studied by means of SEM, XRD and FT-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abed AM, Sadaqah R, Al KM (2008) Uranium and potentially toxic metals during the mining, beneficiation, and processing of phosphorite and their effects on ground water in Jordan. Mine Water Environ 27(3):171–182

    CAS  Google Scholar 

  2. Kim J, Tsouris C, Mayes RT et al (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48(3):367–387

    CAS  Google Scholar 

  3. Ogawa T, Minato K, Okamoto Y, Nishihara K (2007) Nuclear energy and waste management—pyroprocess for system symbiosis. J Nucl Mater 360(1):12–15

    CAS  Google Scholar 

  4. Basu A, Brown ST, Christensen JN et al (2015) Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine. Environ Sci Technol 49(10):5939–5947

    CAS  PubMed  Google Scholar 

  5. Luo MB, Bo-Ping LI, Zhi Y et al (2008) Preconcentration techniques for uranium(VI) prior to analytical determination—an overview. Uranium Geol 24(1):57–62

    CAS  Google Scholar 

  6. Wang X, Fan Q, Yu S et al (2016) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 281:448–455

    Google Scholar 

  7. Panja S, Mohapatra PK, Tripathi SC et al (2012) A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2012.06.015

    Article  Google Scholar 

  8. Kim GN, Bin SD, Park HM et al (2011) The development of precipitation-filtering technology for uranium electrokinetic leachate. Sep Purif Technol 79(2):144–150

    CAS  Google Scholar 

  9. Tavakoli H, Sepehrian H, Semnani F, Samadfam M (2013) Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: breakthrough curves, elution behavior and modeling studies. Ann Nucl Energy 54:149–153

    CAS  Google Scholar 

  10. Korichi S, Bensmaili A (2009) Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling. J Hazard Mater 169(1–3):780–793

    CAS  PubMed  Google Scholar 

  11. Crane RA, Scott T (2014) The removal of uranium onto carbon-supported nanoscale zero-valent iron particles. J Nanopart Res 16(12):2813

    PubMed  PubMed Central  Google Scholar 

  12. Li Y, Li L, Yu J (2017) Applications of zeolites in sustainable chemistry. Chem 3(6):928–949

    CAS  Google Scholar 

  13. Zhou L, Boyd CE (2014) Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study. Aquaculture 432:252–257

    CAS  Google Scholar 

  14. Markou G, Vandamme D, Muylaert K (2014) Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresour Technol 155:373–378

    CAS  PubMed  Google Scholar 

  15. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

    CAS  Google Scholar 

  16. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314

    CAS  PubMed  Google Scholar 

  17. Liang Z, Shi W, Zhao Z et al (2017) The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry. J Colloid Interface Sci 496:382–390

    CAS  PubMed  Google Scholar 

  18. Ezzeddine Z, Batonneau-Gener I, Pouilloux Y et al (2018) Synthetic nax zeolite as a very efficient heavy metals sorbent in batch and dynamic conditions. Colloids Interfaces 2(2):22

    CAS  Google Scholar 

  19. Tangkawanit S, Rangsriwatananon K (2004) Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Mater 75(3):273–279

    Google Scholar 

  20. Querol X, Moreno N, Umaa JC et al (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50(1):413–423

    CAS  Google Scholar 

  21. Vocciante M, De Folly D’Auris A, Finocchi A et al (2018) Adsorption of ammonium on clinoptilolite in presence of competing cations: investigation on groundwater remediation. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.07.025

    Article  Google Scholar 

  22. Baek W, Ha S, Hong S et al (2018) Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microporous Mesoporous Mater 264:159–166

    CAS  Google Scholar 

  23. Hernández-Montoya V, Pérez-Cruz MA, Mendoza-Castillo DI et al (2013) Competitive adsorption of dyes and heavy metals on zeolitic structures. J Environ Manag 116:213–221

    Google Scholar 

  24. Dimirkou A, Doula MK (2008) Use of clinoptilolite and an Fe-overexchanged clinoptilolite in Zn2+ and Mn2+ removal from drinking water. Desalination 224(1–3):280–292

    CAS  Google Scholar 

  25. Dyer A (2007) Natural zeolites by G. V. Tsitsishvili, T. G. Andronikashvili, G. R. Kirov and L. D. Filizova. Ellis Horwood, Chichester 1991. No. of pages: 297. Price: £69.00 (hardback). ISBN 0 13 612037 7. Geol J. https://doi.org/10.1002/gj.3350290217

    Article  Google Scholar 

  26. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304(1):21–28

    CAS  PubMed  Google Scholar 

  27. Huynh J, Palacio R, Safizadeh F et al (2017) Adsorption of uranium over NH2-functionalized ordered silica in aqueous solutions. ACS Appl Mater Interfaces 9(18):15672–15684

    CAS  PubMed  Google Scholar 

  28. Zhou L, Zou H, Wang Y et al (2016) Adsorption of uranium(VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308(3):935–946

    CAS  Google Scholar 

  29. Parab H, Joshi S, Shenoy N et al (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96(11):1241–1248

    CAS  PubMed  Google Scholar 

  30. Vijaya Y, Popuri SR, Boddu VM, Krishnaiah A (2008) Modifified chitosan and calcium alginate biopolymer sorbents for removal of nickel(II) through adsorption. Carbohydr Polym 72:261–271

    CAS  Google Scholar 

  31. Erdem B, Özcan A, Özcan AS (2010) Adsorption and solid phase extraction of 8-hydroxyquinoline from aqueous solutions by using natural bentonite. Appl Surf Sci 256(17):5422–5427

    CAS  Google Scholar 

  32. Zhang WM, Liu HY, Fan XR, Zhuo Z, Guo YD (2019) Removal of uranium from aqueous solution by a permeable reactive barrier loaded with hydroxyapatite-coated quartz sand: implication for groundwater remediation. Chem Erde. https://doi.org/10.1016/j.chemer.2019.125545

    Article  Google Scholar 

  33. Khan TA, Dahiya S, Khan EA (2017) Removal of direct red 81 from aqueous solution by adsorption onto magnesium oxide-coated kaolinite: isotherm, dynamics and thermodynamic studies. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12432

    Article  Google Scholar 

  34. Wu FC, Wu PH, Tseng RL, Juang RS (2014) Use of refuse-derived fuel waste for the adsorption of 4-chlorophenol and dyes from aqueous solution: equilibrium and kinetics. J Taiwan Inst Chem Eng 45(5):2628–2639

    CAS  Google Scholar 

  35. Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303(1):867–876

    CAS  Google Scholar 

  36. Liu X, Xu Y, Jin R et al (2014) Facile synthesis of hierarchical Fe4(P2O7)3 for removal of U(VI). J Mol Liq. https://doi.org/10.1016/j.molliq.2014.10.021

    Article  Google Scholar 

  37. Wang J, Chen Z, Shao D et al (2017) Adsorption of U(VI) on bentonite in simulation environmental conditions. J. Mol, Liq, p 242

    Google Scholar 

  38. Han H, Cheng C, Hu S et al (2017) Facile synthesis of gelatin modified attapulgite for the uptake of uranium from aqueous solution. J Mol Liq 234:172–178

    CAS  Google Scholar 

  39. Liu T, Wu K, Zeng L (2012) Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  40. Azari A, Gharibi H, Kakavandi B et al (2016) Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4990

    Article  Google Scholar 

  41. Guzel P, Aydın YA, Deveci Aksoy N (2016) Removal of chromate from wastewater using amine-based-surfactant-modified clinoptilolite. Int J Environ Sci Technol 13(5):1277–1288

    CAS  Google Scholar 

  42. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35(4):658–670

    CAS  Google Scholar 

  43. Golubeva OY, Mokeev MV (2016) Study of the influence of extra-framework cations and organic templates on zeolite crystallization in SiO2–Al2O3–Na2O–K2O (R2O, RO) systems. Glas Phys Chem 42(6):566–575

    CAS  Google Scholar 

  44. Bok TO, Knyazeva EE, Ivanova II (2018) Specific features of formation of crystalline silicoaluminophosphates in grains based on kaolin and phosphoric acid. Russ J Appl Chem 91(6):948–958

    CAS  Google Scholar 

  45. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184(1–3):65–72

    CAS  PubMed  Google Scholar 

  46. Nasirmahaleh HH, Safi SZ, Sazegar MR et al (2016) Adsorption of amoxicillin on surfactant modified zeolites and their antibacterial activity. Res J Biotechnol 11(9):75–78

    CAS  Google Scholar 

  47. Favvas EP, Tsanaktsidis CG, Sapalidis AA et al (2016) Clinoptilolite, a natural zeolite material: structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater 255:385–391

    Google Scholar 

  48. Kussainova MZ, Chernyakova RM, Jussipbekov UZ, Paşa S (2019) Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.02.012

    Article  Google Scholar 

  49. Miraboutalebi SM, Nikouzad SK, Peydayesh M et al (2017) Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Saf Environ Prot 106:191–202

    CAS  Google Scholar 

  50. Wan M-W, Kan C-C, Rogel BD, Dalida MLP (2010) Adsorption of copper(II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80:891–899

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41562011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Zhang, W., Liu, H. et al. Enhanced removal of U(VI) from aqueous solution by chitosan-modified zeolite. J Radioanal Nucl Chem 323, 1003–1012 (2020). https://doi.org/10.1007/s10967-019-06993-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06993-w

Keywords

Navigation