Skip to main content
Log in

Sources of carbon isotopes in Baltic Sea sediments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiocarbon and specific phospholipid-derived biomarkers were used to trace chemical warfare agents (CWA) at the Gotland Deep dumping site of chemical weapons. Δ14C measurements in different classes of organic fractions, such as total lipid extracts (TLE), humic acids (HA) and phospholipid-derived fatty acids (PLFA) isolated from bottom sediments have been applied. In addition, specific PLFA biomarkers extracted from sediments were analyzed by gas chromatography. Contrary to Δ14CHA, the most depleted Δ14CTOC and Δ14CTLE values were found in bottom sediments samples collected at the CWA dumpsite, which were attributed to different carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergström L, Dainys J, Heikinheimo O, Jakubaviciute E, Kruze E, Lappalainen A, Lozys L, Minde A, Saks L, Svirgsden R, Ådjers K, Olsson J (2016) Long term changes in the status of coastal fish in the Baltic Sea. Estuar Coast Shelf Sci 169:74–84

    Google Scholar 

  2. HELCOM (2016) Hydrography and oxygen in the deep-sea basins. HELCOM Baltic Sea Environment Fact Sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/. July 6, 2017

  3. Szczepańska A, Zaborska A, Maciejewska A, Kuliński K, Pempkowiak J (2012) Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs. Geochronometria 39(1):1–9

    Google Scholar 

  4. Jaanus A, Andersson A, Olenina I, Toming K, Kaljurand K (2011) Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008. Boreal Environ Res 16:191–208

    Google Scholar 

  5. Bergström St, Carlsson B (1994) River runoff to the Baltic Sea—1950–1990. Ambio 23(4–5):280–287

    Google Scholar 

  6. Tamelander T, Spilling K, Winder M (2017) Organic matter export to the seafloor in the Baltic Sea: drivers of change and future projections. Ambio 46(8):842–851

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Logue JB, Stedmon CA, Kellerman AM, Nielsen NJ, Andersson AF, Laudon H, Lindström ES, Kritzberg ES (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10:533–545

    CAS  PubMed  Google Scholar 

  8. Lujanienė G, Li H-C, Mažeika J, Paškauskas R, Remeikaitė-Nikienė N, Garnaga-Budrė G, Levinskaitė L, Jokšas K, Bugailiškytė D, Šemčuk S, Kačergius A, Stankevičius A, Stirbys V, Povinec PP (2018) Carbon isotopes as tracers of organic and inorganic carbon in Baltic Sea Sediments. Radiocarbon 60:1493–1505

    Google Scholar 

  9. Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione JF (2016) Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. Environ Sci Pollut Res 23:4242–4256

    CAS  Google Scholar 

  10. Vinothini C, Sudhakar S, Ravikumar R (2015) Biodegradation of petroleum and crude oil by Pseudomonas putida and Bacillus cereus. Int J Curr Microbiol Appl Sci 4(1):318–329

    CAS  Google Scholar 

  11. Rodríguez J, Gallampois CMJ, Timonen S, Andersson A, Sinkko H, Haglund P, Berglund ÅMM, Ripszam M, Figueroa D, Tysklind M, Rowe O (2018) Effects of organic pollutants on bacterial communities under future climate change scenarios. Front Microbiol 9:2926

    PubMed  PubMed Central  Google Scholar 

  12. McCallister SL, Ishikawa NF, Kothawala DN (2018) Biogeochemical tools for characterizing organic carbon in inlandaquatic ecosystems. Limnol Oceanogr Lett 3:444–457

    Google Scholar 

  13. Uchida M, Shibata Y, Kawamura K, KumamotoY Yoneda M, Ohkushi N, Harada M, Hirota M, Mukai Tanaka A, Kusakabe M, Morita M (2001) Compound-specific radiocarbon ages of fatty acids in marine sediments from the Western North Pacific. Radiocarbon 43(2B):949–956

    CAS  Google Scholar 

  14. Mollenhauer G, Rethemeyer J (2009) Compound-specific radiocarbon analysis—analytical challenges and applications. IOP Conf Ser Earth Environ Sci 5:012006

    Google Scholar 

  15. Druffel ERM, Zhang D, Xu X, Ziolkowski LA, Southon JR, dos Santos GM, Trumbore SE (2010) Compound-specific radiocarbon analyses of phospholipid fatty acids and n-alkanes in ocean sediments. Radiocarbon 52(2–3):1215–1223

    CAS  Google Scholar 

  16. Lammers JM, Reichart G-J, Middelburg JJ (2017) Seasonal variability in phytoplankton stable carbon isotope ratios and bacterial carbon sources in a shallow Dutch lake. Limnol Oceanogr 62:2773–2787

    CAS  Google Scholar 

  17. Mills CT, Slater GF, Dias RF, Carr SA, Reddy CM, Schmidt R, Mandernack KW (2013) The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seepage. FEMS Microbiol Ecol 84:474–494

    CAS  PubMed  Google Scholar 

  18. Kutschera W (2016) Accelerator mass spectrometry: state of the art and perspectives. Adv Phys X 1(4):570–595

    CAS  Google Scholar 

  19. Haghipour N, Ausin B, Usman MO, Ishikawa N, Wacker L, Welte C, Ueda K, Eglinton TI (2019) Compound-specific radiocarbon analysis by elemental analyzer-accelerator mass spectrometry: precision and limitations. Anal Chem 91(3):2042–2049

    CAS  PubMed  Google Scholar 

  20. Glasby GP (1997) Disposal of chemical weapons in the Baltic Sea. Sci Total Environ 206:267–273

    CAS  PubMed  Google Scholar 

  21. Sanderson H, Fauser P (2008) Historical and qualitative analysis of the state and impact of dumped chemical warfare agents in the Bornholm Basin from 1948–2008. Internal Report DMU-7500061B. National Environmental Research Institute, p 25

  22. HELCOM (1994) Report on chemical munitions dumped in the Baltic Sea, Report to the 15th Meeting of Helsinki Commission, 8–11 March 1994 from the Ad Hoc Working Group on Dumped Chemical Munition (HELCOM CHEMU), January 1994, Danish Environmental Protection Agency, p 39

  23. HELCOM (1995) Final Report of the ad hoc Working Group on Dumped Chemical Munition (HELCOM CHEMU) to the 16th Meeting of the Helsinki Commission (March 1995), Danish Environmental Protection Agency, p 20

  24. Franke Z (1973) Chemistry of warfare agents. Chimija 1:136 (in Russian)

    Google Scholar 

  25. Medvedeva N, Polyak Y, Kankaanpää H, Zaytseva T (2009) Microbial responses to mustard gas dumped in the Baltic Sea. Mar Environ Res 68(2):71–81

    CAS  PubMed  Google Scholar 

  26. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29(2):111–129

    CAS  Google Scholar 

  27. Tiwari SC, Sureshkumar Singh S, Dkhar MS, Schloter M, Gattinger A (2011) Microbial community structures of degraded and undegraded humid tropical forest soils as measured by phospholipid fatty acid [PLFA] profiles. J Biodivers Ecol Sci 1(3):197–212

    Google Scholar 

  28. Lujanienė G, Mažeika J, Li HC, Petrošius R, Barisevičiūtė R, Jokšas K, Remeikaitė-Nikienė N, Malejevas V, Garnaga-Budrė G, Stankevičius A, Kulakauskaitė I, Povinec PP (2015) Δ14C and δ13C variations in organic fractions of Baltic Sea sediments. Radiocarbon 57(3):479–490

    Google Scholar 

  29. Lujanienė G, Mažeika J, Li H-C, Petrošius R, Barisevičiutė R, Jokšas K, Remeikaitė-Nikienė N, Malejevas V, Garnaga G, Stankevičius A, Povinec PP (2016) Δ14C and δ13C as tracers of organic carbon in Baltic Sea sediments collected in coastal waters off Lithuania and in the Gotland Deep. J Radioanal Nucl Chem 307(3):2231–2237

    Google Scholar 

  30. Swift RS (1996) Organic matter characterization. In: Sparks DL, Bartles JM, Bigham JM, editors. Methods of soil analysis: part 3. Chemical methods. Madison: soil science society of America, pp 1018–1020

  31. Brock F, Higham T, Ditchfield P, Ramse CB (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU). Radiocarbon 52:103–112

    CAS  Google Scholar 

  32. Xu X, Trumbore SE, Zheng S, Southon JR, McDuffee KE, Luttgen M, Liu JC (2007) Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl Instrum Methods Phys Res B 259(1):320–329

    CAS  Google Scholar 

  33. Kim J-C, Park J-H, Kim I-C, Lee C, Cheoun M-K, Kang J, Song Y-M, Jeong S-C (2001) Progress and protocol at the Seoul National University AMS facility. J Korean Phys Soc 39(4):778–782

    CAS  Google Scholar 

  34. Martin M, Gebühr C, Martire D, Wiltshire KH (2014) Characterization of a humic acid extracted from marine sediment and its influence on the growth of marine diatoms. J Mar Biol Assoc UK 94(5):895–906

    CAS  Google Scholar 

  35. Zelles L, Palojärvi A, Kandeler E, Von Lützow M, Winter K, Bai QY (1997) Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation. Soil Biol Biochem 29:1325–1336

    CAS  Google Scholar 

  36. Berge JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    CAS  PubMed  Google Scholar 

  37. Dong H-Y, Kong C-H, Wang P, Huang Q-L (2014) Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem. Soil Biol Biochem 69:275–281

    CAS  Google Scholar 

  38. Dalsgaard J, John MS, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    PubMed  Google Scholar 

  39. Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H, Engels C, Oelmann Y, Scheu S, Wilcke W, Schulze ED, Gleixner G (2014) Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9:e96182

    PubMed  PubMed Central  Google Scholar 

  40. Reinsch S, Michelsen A, Sárossy Z, Egsgaard H, Schmidt IK, Jakobsen I, Ambus P (2014) Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland. Soil Biol Biochem 68:9–19

    CAS  Google Scholar 

  41. Alonge OO (2016) Comparative evaluation of the efficacy of Pseudomonas putida in the bioremediation of diesel fuel contaminated derno-podzoluivisolic soil of differenthorizonts. GJ Pure Appl Sci 22:129–133

    Google Scholar 

  42. James RH, Bousquet Ph, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstadte L, Greinert J (2016) Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnol Oceanogr 61:S283–S299

    CAS  Google Scholar 

  43. Rinnan R, Bååth E (2009) Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil. Appl Environ Microbiol 75(11):3611–3620

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Seifert A-G, Trumbore S, Xu X, Zhang D, Kothe E, Gleixner G (2011) Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation. Geochim Cosmochim Acta 75:2557–2570

    CAS  Google Scholar 

  45. Fichtner A, Von Oheimb G, Hardtle W, Wilken C, Gutknecht JLM (2014) Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 years. Soil Biol Biochem 70:79–87

    CAS  Google Scholar 

  46. Connelly TL, Deibel D, Parrish CC (2014) Trophic interactions in the benthic boundary layer of the Beaufort Sea Shelf, Arctic Ocean: combining bulk stable isotope and fatty acid signatures. Prog Oceanogr 120:79–92

    Google Scholar 

Download references

Acknowledgements

The Financial support provided by the Research Council of Lithuania (Contract No. MIP-080/2012) is acknowledged. Authors thank students of the Chemical Department of the Vilnius University for their technical assistance. We are grateful for funding support to H-C Li for the AMS 14C measurements from NSC 102-2811-M-002-177 and MOST 103-2116-M-002-001 of Taiwan. PPP acknowledges support provided by the EU Research and Development Operational Program funded by the ERDF (Project No. 26240220004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Lujanienė.

Ethics declarations

Conflict of interest

We declare no conflict of interest which could be associated with this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lujanienė, G., Li, HC., Jokšas, K. et al. Sources of carbon isotopes in Baltic Sea sediments. J Radioanal Nucl Chem 322, 1461–1467 (2019). https://doi.org/10.1007/s10967-019-06834-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06834-w

Keywords

Navigation