Skip to main content
Log in

Sorption characteristics of uranium from sulfate leach liquor by commercial strong base anion exchange resins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The extraction of uranium from natural rock is extremely vital in field of nuclear applications. In this work, the sorption properties of uranium from sulfate leach liquor using Amberlyst A-27 and Dowex 21K resins were evaluated. The sorption features such as contact time, initial pH value, initial uranium concentration and temperature, were optimized to get the best sorption uptake. The models calculations of sorption including kinetics, isotherm and thermodynamic were applied. The highest sorption capacity of uranium on Amberlyst A-27 and Dowex 21K was 131.57 and 105.26 mg/g respectively. The sorption process was confirmed using (XRF), FTIR and SEM techniques. The XRF data emphasized that uranium was sorbed on the resins as uranyl sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar J, Kim J-S, Lee J-Y, Yoon H-S (2011) Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760

    Article  CAS  Google Scholar 

  2. Whitty-Léveillé L, Reynier N, Larivière D (2018) Hydrometallurgy 177:187–196. https://doi.org/10.1016/j.hydromet.2018.03.015

    Article  CAS  Google Scholar 

  3. Gazala RA, Nagar MS (2017) J Anal Bioanal Tech 8(6):392. https://doi.org/10.4172/2155-9872.1000392

    Article  Google Scholar 

  4. Aly MM, Hamza MF (2013) J Dispers Sci Technol 34(2):182–213. https://doi.org/10.1080/01932691.2012.657954

    Article  CAS  Google Scholar 

  5. Hu Y, Zhou WK (2019) Ann Nucl Energy 128:278–287. https://doi.org/10.1016/j.anucene.2019.01.018

    Article  CAS  Google Scholar 

  6. Alyan A, Abdel-Samad S, Massoud A, Waly SA (2019) Heat Mass Transf. https://doi.org/10.1007/s00231-019-02588-z

    Article  Google Scholar 

  7. Farid OM, Ojovan MI, Massoud A, Abdel Rahman RO (2019) Materials 12:1462. https://doi.org/10.3390/ma12091462

    Article  PubMed Central  Google Scholar 

  8. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Prog Mater Sci 103:180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    Article  CAS  Google Scholar 

  9. Ruikar PB, Nagar MS, Subramanian MS, Gupta KK, Varadarajan N, Singh RK (1995) J Radioanal Nucl Chem 196:171–178. https://doi.org/10.1007/BF02036302

    Article  CAS  Google Scholar 

  10. Al-Harahsheh M, AlJarrah M, Mayyas M, Alrebaki M (2018) J Taiwan Inst Chem Eng 86:148–157. https://doi.org/10.1016/j.jtice.2018.03.005

    Article  CAS  Google Scholar 

  11. Bujdosó E (1997) J Radioanal Nucl Chem 222:295–305. https://doi.org/10.1007/BF02034291

    Article  Google Scholar 

  12. PallaviSinghal SK, Jha SP, Pandey S (2017) J Hazard Mater 335:152–161. https://doi.org/10.1016/j.jhazmat.2017.04.043

    Article  CAS  Google Scholar 

  13. Senol A (2014) Sep Purif Technol 131:35–49. https://doi.org/10.1016/j.seppur.2014.04.034

    Article  CAS  Google Scholar 

  14. Kim JS, Han KS, Kim SJ, Kim S-D, Lee J-Y, Han C, Kumar JR (2016) J Radioanal Nucl Chem 307(2):843–854. https://doi.org/10.1007/s10967-015-4327-7

    Article  CAS  Google Scholar 

  15. Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2010) J Radioanal Nucl Chem 285(2):301–308. https://doi.org/10.1007/s10967-010-0552-2

    Article  CAS  Google Scholar 

  16. Hadadian M, Mallah MH, Moosavian MA, Safdari J, Davoudi M (2016) Prog Nucl Energy 90:212–218. https://doi.org/10.1016/j.pnucene.2016.03.024

    Article  CAS  Google Scholar 

  17. Abdel-Samad S, Alyan A, Massoud A, Elbedwehy AM (2017) Curr Nanosci 13:1–9. https://doi.org/10.2174/1573413713666170619124221

    Article  CAS  Google Scholar 

  18. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) Chem Eng J 255(1):604–612. https://doi.org/10.1016/j.cej.2014.06.063

    Article  CAS  Google Scholar 

  19. Massoud A, Waly SA, El-Nour FA (2017) Radiochemistry 59(3):272–279. https://doi.org/10.1134/S1066362217030092

    Article  CAS  Google Scholar 

  20. Massoud A, El-Nour A, Killa H, Seddik U (2010) Cent Eur J Chem 8(3):696–701. https://doi.org/10.2478/s11532-010-0041-z

    Article  CAS  Google Scholar 

  21. Mahdy RM, Ghazala RA (2019) Arab J Nucl Sci Appl 52(1):211–220. https://doi.org/10.21608/ajnsa.2018.4302.1101

    Article  Google Scholar 

  22. Massaoud AA, Hanafi HA, Siyam T, Saleh ZA, Ali FA (2008) Cent Eur J Chem 6(1):39–45. https://doi.org/10.2478/s11532-007-0054-4

    Article  CAS  Google Scholar 

  23. Elwakeel KZ, Atia AA, Guiba E (2014) Bioresour Technol 160:107–114. https://doi.org/10.1016/j.biortech.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  24. Waly SA, Shehata MM, Massoud A (2018) Chem Res J 3(1):1–8

    CAS  Google Scholar 

  25. Massoud A, El-Nour FA, Killa H (2012) In: Third international conference on radiation sciences and applications, Hurghada, Egypt, 12–16 November

  26. Othman SH, Eldin AAE, Borai EH, Mahmoud WH (2017) J Radioanal Nucl Chem 314(2):1063–1073. https://doi.org/10.1007/s10967-017-5463-z

    Article  CAS  Google Scholar 

  27. Li N, Zhang L, Chen Y, Tian Y, Wang H (2011) J Hazard Mater 189:265–272. https://doi.org/10.1016/j.jhazmat.2011.02.031

    Article  CAS  PubMed  Google Scholar 

  28. Lin J, Zhan Y, Zhu Z (2011) Colloids Surf A 384:9–16. https://doi.org/10.1016/j.colsurfa.2011.02.044

    Article  CAS  Google Scholar 

  29. Wu Q, Chen J, Clark M, Yu Y (2014) Appl Surf Sci 311:264–272. https://doi.org/10.1016/j.apsusc.2014.05.054

    Article  CAS  Google Scholar 

  30. Cai Y, Wu C, Liu Z, Zhang L, Chen L, Wang J, Wang X, Yang S, Wang S (2017) Environ Sci Nano 4:1876–1886. https://doi.org/10.1039/C7EN00412E

    Article  CAS  Google Scholar 

  31. Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Ann Nucl Energy 75:132–138. https://doi.org/10.1016/j.anucene.2014.08.009

    Article  CAS  Google Scholar 

  32. Nascimento MRL, Fatibello-Filho O, Teixeira LA (2004) Miner Process Extr Metall Rev 25(2):129–142. https://doi.org/10.1080/08827500490433197

    Article  CAS  Google Scholar 

  33. White RL, White CM, Turgut H, Massoud A, Ryan Tian Z (2018) J Taiwan Inst Chem Eng 85:18–28. https://doi.org/10.1016/j.jtice.2018.01.036

    Article  CAS  Google Scholar 

  34. Massoud A, Waly SA (2014) Colloid Polym Sci 292(12):3077–3083. https://doi.org/10.1007/s00396-014-3335-4

    Article  CAS  Google Scholar 

  35. Massoud A, Mahmoud HH (2017) J Inorg Organomet Polym 27:1806–1815. https://doi.org/10.1007/s10904-017-0645-2

    Article  CAS  Google Scholar 

  36. Huang Y (2019) Appl Surf Sci 469:564–565. https://doi.org/10.1016/j.apsusc.2018.11.070

    Article  CAS  Google Scholar 

  37. Shu J, Cheng S, Xia H, Zhang L, Peng J, Li C, Zhang S (2017) RSC Adv 7:14395–14405. https://doi.org/10.1039/C7RA00287D

    Article  CAS  Google Scholar 

  38. Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Naidu G, Nguyen TV, Vigneswaran S (2016) Sep Purif Technol 158:62–70. https://doi.org/10.1016/j.seppur.2015.12.022

    Article  CAS  Google Scholar 

  39. Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB (2019) J Environ Radioact 197:81–89. https://doi.org/10.1016/j.jenvrad.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  40. Evans PJM, Chirwa MN (2019) Biochem Eng J 145:62–73. https://doi.org/10.1016/j.bej.2019.02.002

    Article  CAS  Google Scholar 

  41. Dai Y, Lv R, Huang D, Tao Q (2018) Water Air Soil Pollut 229:124–133. https://doi.org/10.1007/s11270-018-3771-8

    Article  CAS  Google Scholar 

  42. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  43. Christou C, Philippou K, Krasia-Christoforou T, Pashalidis I (2019) Carbohydr Polym 219:298–305. https://doi.org/10.1016/j.carbpol.2019.05.041

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Zhao D, Ding Y, Chen Y, Li F, Alsaedi A, Hayat T, Chen C (2019) J Clean Prod 230:1305–1315. https://doi.org/10.1016/j.jclepro.2019.05.193

    Article  CAS  Google Scholar 

  45. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, El-shereafy E (2019) J Hazard Mater 378:120703. https://doi.org/10.1016/j.jhazmat.2019.05.096

    Article  CAS  PubMed  Google Scholar 

  46. Gdula K, Gładysz-Płaska A, Cristóvão B, Ferenc W, Skwarek E (2019) J Mol Liq 290:111217. https://doi.org/10.1016/j.molliq.2019.111217

    Article  CAS  Google Scholar 

  47. Anirudhan TS, Lekshmi GS, Shainy F (2019) J Colloid Interface Sci 534:248–261. https://doi.org/10.1016/j.jcis.2018.09.009

    Article  PubMed  Google Scholar 

  48. Cao Q, Liu Y, Wang C, Chenga J (2013) J Hazard Mater 263:311–321. https://doi.org/10.1016/j.jhazmat.2013.05.039

    Article  CAS  PubMed  Google Scholar 

  49. Morsy AMA (2015) Environ Technol Innov 4:299–310. https://doi.org/10.1016/j.eti.2015.10.002

    Article  Google Scholar 

  50. Pan D, Fan Q, Fan F, Tang Y, Zhang Y, Wu W (2017) Sep Purif Technol 177:86–93. https://doi.org/10.1016/j.seppur.2016.12.026

    Article  CAS  Google Scholar 

  51. Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Ann Nucl Energy 48:21–24. https://doi.org/10.1016/j.anucene.2012.05.010

    Article  CAS  Google Scholar 

  52. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Chem Eng J 171:1185–1193. https://doi.org/10.1016/j.cej.2011.05.022

    Article  CAS  Google Scholar 

  53. Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D (2015) Chem Eng J 259:752–760. https://doi.org/10.1016/j.cej.2014.08.015

    Article  CAS  Google Scholar 

  54. Yuan D, Long C, Xin X, Yuan L, Liao S, Wang Y (2016) Chem Eng J 285:358–367. https://doi.org/10.1016/j.cej.2015.10.014

    Article  CAS  Google Scholar 

  55. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed Engl 48:7752–7777. https://doi.org/10.1002/anie.200901678

    Article  CAS  PubMed  Google Scholar 

  56. Ren W, Chang H, Mao T, Teng Y (2019) Chem Eng J 362:160–168. https://doi.org/10.1016/j.cej.2019.01.027

    Article  CAS  Google Scholar 

  57. Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Biores Technol 281:66–71. https://doi.org/10.1016/j.biortech.2019.02.065

    Article  CAS  Google Scholar 

  58. Yang S-T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) J Colloid Interface Sci 351:122–127. https://doi.org/10.1016/j.jcis.2010.07.042

    Article  CAS  PubMed  Google Scholar 

  59. Geim AK (2009) Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  60. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) ACS Nano 4(7):3979–3986. https://doi.org/10.1021/nn1008897

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Zhi L, Mullen K (2008) Nano Lett 8(1):323–327. https://doi.org/10.1021/nl072838r

    Article  CAS  PubMed  Google Scholar 

  62. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  63. Liu Z, Zhang H, Zhou W, Hao S, Zhou Z, Qi X, Sh J (2019) Vib Spectrosc 101:28–33. https://doi.org/10.1016/j.vibspec.2018.08.009

    Article  CAS  Google Scholar 

  64. Parveen S, Ahamad T, Nishat N (2008) Appl Organometal Chem 22(2):70–77. https://doi.org/10.1002/aoc.1344

    Article  CAS  Google Scholar 

  65. Nishat N, Ahamad T, Zulfequar M, Hasnain S (2008) J Appl Polym Sci 110(6):3305–3312. https://doi.org/10.1002/app.28752

    Article  CAS  Google Scholar 

  66. Massoud A, Abou E-N, Killa H (2012) In: Third international conference on radiation sciences and applications, 12–16 November/Hurghada, Egypt

  67. Massoud A (2008) M.Sc. thesis, Faculty of Science, Menofia University, Shibin Elkom, Egypt

  68. Du H, Lung CYK, Lau T-C (2018) Environ Sci Water Res Technol 4(3):421–427. https://doi.org/10.1039/C7EW00421D

    Article  CAS  Google Scholar 

  69. Gamoudi S, Srasra E (2019) J Mol Struct 1193:522–531. https://doi.org/10.1016/j.molstruc.2019.05.055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Cyclotron project, Egyptian Atomic Energy Authority, for the financial support. We would also like to acknowledge the Nuclear Materials Authority, Egypt for providing the required uranium source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Massoud.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoud, A., Masoud, A.M. & Youssef, W.M. Sorption characteristics of uranium from sulfate leach liquor by commercial strong base anion exchange resins. J Radioanal Nucl Chem 322, 1065–1077 (2019). https://doi.org/10.1007/s10967-019-06770-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06770-9

Keywords

Navigation