Skip to main content
Log in

Grafting of quaternary ammonium groups for uranium(VI) recovery: application on natural acidic leaching liquor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Grafting of quaternary ammonium group is the main goal of this research for uranium recovery. The sorbent was investigated by FTIR, SEM–EDX, elemental analysis, thermogravemetric and XPS analyses, it shows high and fast loading performance (176.49 mg U g−1), the total equilibrium reached within 25 min, fitted by first order rate equation and Sips model for sorption kinetics and isotherms respectively. Complete desorption achieved after 30 min by 1.0 M NaCl in 0.1 M H2SO4. Sorption/desorption was measured after 10 cycles without significant loss in the capacity. Finally, the sorbent applied for uranium recovery of leaching solution from sulfuric acid on gibbsite bearing shale ore materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi J, Lee JY, Yang J-S (2009) Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. J Hazard Mater 161(1):157–162

    CAS  PubMed  Google Scholar 

  2. Rogner H-H, Toth FL, McDonald A (2010) Judge nuclear on its merits. Atw Internationale Zeitschrift fuer Kernenergie 56(12):761–763

    Google Scholar 

  3. Lottering M, Lorenzen L, Phala N, Smit J, Schalkwyk G (2008) Mineralogy and uranium leaching response of low grade South African ores. Miner Eng 21(1):16–22

    CAS  Google Scholar 

  4. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258

    CAS  Google Scholar 

  5. Gajda D, Kiegiel K, Zakrzewska-Koltuniewicz G, Chajduk E, Bartosiewicz I, Wolkowicz S (2015) Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones. J Radioanal Nucl Chem 303(1):521–529

    CAS  PubMed  Google Scholar 

  6. Smirnov AL, Titova SM, Rychkov VN, Bunkov GM, Semenishchev VS, Kirillov EV, Poponin NN, Svirsky IA (2017) Study of scandium and thorium sorption from uranium leach liquors. J Radioanal Nucl Chem 312(2):277–283

    CAS  Google Scholar 

  7. Wang Y-D, Li G-Y, Ding D-X, Zhang Z-Y, Chen J, Hu N, Li L (2015) Column leaching of uranium ore with fungal metabolic products and uranium recovery by ion exchange. J Radioanal Nucl Chem 304(3):1139–1144

    CAS  Google Scholar 

  8. Rashidi A, Roosta-Azad R, Safdari S (2014) Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nucl Chem 301(2):341–350

    CAS  Google Scholar 

  9. Shatalov V, Skorovarov D, Smirnov I (1999) Development of advanced technology in the hydrometallurgy of uranium. At Energ 86(5):311–316

    CAS  Google Scholar 

  10. Brown J, Fleming C (2010) The re-emergence of resin in pulp with strong base resins as a low cost, technically viable process for the recovery of uranium. SGS Miner Ser Tech Paper 1–10

  11. Van Tonder D (2012) Comparison of resin-in-pulp and direct precipitation for recovery of uranium in alkaline leach circuits. 3(2):131–139

  12. El-Azony K, Qaim S (2007) Anion-exchange and solvent extraction studies on the separation of radioiodine with particular reference to the production of 123I via proton irradiation of 123Te metal target. J Radioanal Nucl Chem 275(2):275–284

    Google Scholar 

  13. Grate J (2001) Extractive scintillating resin for 99Tc quantification in aqueous solutions. J Radioanal Nucl Chem 249(1):181–189

    Google Scholar 

  14. Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S-i, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282(2):641–644

    CAS  Google Scholar 

  15. Nogami M, Fujii Y, Sugo T (1996) Radiation resistance of pyridine type anion exchange resins for spent fuel treatment. J Radioanal Nucl Chem 203(1):109–117

    CAS  Google Scholar 

  16. Aldabbgh S, Dybczynski R (1985) Ion exchange behaviour of 18 elements on amphoteric resin Retardion 11A8 in ammonium chloride, NH4Cl + NH3 and NH4Cl + HCl media. J Radioanal Nucl Chem 92(1):37–50

    CAS  Google Scholar 

  17. Samczyński Z, Dybczyński R (2002) The use of Retardion 11A8 amphoteric ion exchange resin for the separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis. J Radioanal Nucl Chem 254(2):335–341

    Google Scholar 

  18. Kellogg HH, Duby P (1972) Book review: the extractive metallurgy of uranium. RC MERRITT (Colorado School of Mines Research Institute, 1971) 576 pp. J Nucl Mater 44(3):350

    Google Scholar 

  19. Chen X, He L, Liu R, Zhang C, Liu B, Tang Y (2015) Effective uranium(VI) sorption from alkaline media using bi-functionalized silica-coated magnetic nanoparticles. RSC Adv 5(70):56658–56665

    CAS  Google Scholar 

  20. Sereni, Julian Gustavo Renzo (2016) Reference module in materials science and materials engineering; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure Process 1(1):1–13

  21. Ghorbani Y, Montenegro MR (2016) Leaching behaviour and the solution consumption of uranium–vanadium ore in alkali carbonate–bicarbonate column leaching. Hydrometallurgy 161:127–137

    CAS  Google Scholar 

  22. Adel A-HA-R, Ibrahim EEA, Fadia YA, Mohammed FH (2010) Studies on the uptake of rare earth elements on polyacrylamidoxime resins from natural concentrate leachate solutions. J Dispers Sci Technol 31(8):1128–1135

    CAS  Google Scholar 

  23. Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques: overview. J Dispers Sci Technol 34(2):182–213

    CAS  Google Scholar 

  24. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8):1215–1221

    CAS  Google Scholar 

  25. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens 24:1–39

    Google Scholar 

  26. Chen H, Wang A (2009) Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. J Hazard Mater 165(1–3):223

    CAS  PubMed  Google Scholar 

  27. Rajaei GE, Aghaie H, Zare K, Aghaie M (2013) Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: kinetics and isotherm studies. Res Chem Intermed 39(8):3579–3594

    Google Scholar 

  28. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Google Scholar 

  29. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    CAS  Google Scholar 

  30. Dragan ES, Loghin DFA, Cocarta AI (2014) Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads. ACS Appl Mater Interfaces 6(19):16577–16592. https://doi.org/10.1021/am504480q

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Z, Xie X, Wang Z, Tao Y, Niu X, Huang X, Liu L, Li Z (2016) Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J Biosci Bioeng 121(6):645–651

    CAS  PubMed  Google Scholar 

  32. Liu N, Assink RA, Smarsly B, Brinker CJ (2003) Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable–NH2 groups. Chem Commun 10:1146–1147

    Google Scholar 

  33. Zhang X, Guan R-F, Wu D-Q, Chan K-Y (2005) Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties. J Mol Catal B Enzym 33(1–2):43–50

    Google Scholar 

  34. Lu S, Chen L, Hamza MF, He C, Wang X, Wei Y, Guibal E (2019) Amidoxime functionalization of a poly (acrylonitrile)/silica composite for the sorption of Ga (III): application to the treatment of Bayer liquor. Chem Eng J 368:459–473

    CAS  Google Scholar 

  35. Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases, vol 86. Studies in physical and theoretical chemistry, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  36. Hamza MF, Abdel-Rahman AAH, Ramadan S, Raslan H, Wang S, Vincent T, Guibal E (2017) Functionalization of magnetic chitosan particles for the sorption of U(VI), Cu(II) and Zn(II)—hydrazide derivative of glycine-grafted chitosan. Materials 10(5):539–560. https://doi.org/10.3390/ma10050539

    Article  CAS  PubMed Central  Google Scholar 

  37. Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    CAS  Google Scholar 

  38. Hamza MF, Roux JC, Guibal E (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 344:124–137

    CAS  Google Scholar 

  39. Fang W, Yabin W, Yanni L (2010) Study of influencing factors and the mechanism of preparing triazinedithiol polymeric nanofilms on aluminum surfaces. Int J Mol Sci 11(11):4715–4725

    Google Scholar 

  40. Fantauzzi M, Elsener B, Atzei D, Rigoldi A, Rossi A (2015) Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv 5(93):75953–75963

    CAS  Google Scholar 

  41. Zheng X, Pan X, Nie Z, Yang Y, Liu L, Yang H, Xia J (2018) Combined DFT and XPS investigation of cysteine adsorption on the pyrite (1 0 0) surface. Minerals 8(9):366

    Google Scholar 

  42. Huang Z, Li Z, Zheng L, Zhou L, Chai Z, Wang X, Shi W (2017) Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem Eng J 328:1066–1074

    CAS  Google Scholar 

  43. Gładysz-Płaska A, Grabias E, Majdan M (2018) Simultaneous adsorption of uranium(VI) and phosphate on red clay. Prog Nucl Energy 104:150–159

    Google Scholar 

  44. Hamza MF, Wei Y, Mira H, Adel A-H, Guibal E (2019) Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem Eng J 362:310–324

    CAS  Google Scholar 

  45. Zhao M, Cao Y, Liu X, Deng J, Li D, Gu H (2014) Effect of nitrogen atomic percentage on N+-bombarded MWCNTs in cytocompatibility and hemocompatibility. Nanoscale Res Lett 9(1):142

    PubMed  PubMed Central  Google Scholar 

  46. Yap W, Yunus WMM, Talib ZA, Yusof N (2011) X-ray photoelectron spectroscopy and atomic force microscopy studies on crosslinked chitosan thin film. Int J Phys Sci 6(11):2744–2749

    CAS  Google Scholar 

  47. Lindberg B, Maripuu R, Siegbahn K, Larsson R, Gölander C-G, Eriksson J (1983) ESCA Studies of heparinized and related surfaces: 1. Model surfaces on steel substrates. J Colloid Interface Sci 95(2):308–321

    CAS  Google Scholar 

  48. Kaufman D, Lower GW (1954) A summary report on the ion exchange process for the recovery of uranium. American Cyanamid Co., Atomic Energy Div., Raw Materials Development Lab., Winchester

    Google Scholar 

  49. Venkatesan G, Pari S (2016) Growth of glycine ethyl ester hydrochloride and its characterizations. Phys B 501:26–33

    CAS  Google Scholar 

  50. Hamza MF, Abdel-Rahman AH (2015) Extraction studies of some hazardous metal ions using magnetic peptide resins. J Dispers Sci Technol 36(3):411–422

    CAS  Google Scholar 

  51. Coates J (2000) Interpretation of infrared spectra, a practical approach, In: Meyers RA (ed) Encyclopedia of analytical chemistry, John Wiley & Sons Ltd, Chichester, pp 10815–10837

  52. Hosoba M, Oshita K, Katarina RK, Takayanagi T, Oshima M, Motomizu S (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639(1–2):51–56

    CAS  PubMed  Google Scholar 

  53. Maheswari MA, Subramanian MS (2005) AXAD-16-3,4-dihydroxy benzoyl methyl phosphonic acid: a selective preconcentrator for U and Th from acidic waste streams and environmental samples. React Funct Polym 62(1):105–114. https://doi.org/10.1016/j.reactfunctpolym.2004.10.001

    Article  CAS  Google Scholar 

  54. Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138. https://doi.org/10.1016/j.anucene.2014.08.009

    Article  CAS  Google Scholar 

  55. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441. https://doi.org/10.1016/j.jcis.2005.09.045

    Article  CAS  PubMed  Google Scholar 

  56. Ai L, Luo X, Lin X, Zhang S (2013) Biosorption behaviors of uranium(VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298(3):1823–1834. https://doi.org/10.1007/s10967-013-2613-9

    Article  CAS  Google Scholar 

  57. Lin W, Carboni M, Abney CW, Taylor-Pashow KML, Vivero-Escoto JL (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52(43):15187–15197. https://doi.org/10.1021/ie402646r

    Article  CAS  Google Scholar 

  58. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65(1):192–200. https://doi.org/10.1016/j.talanta.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  59. Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24. https://doi.org/10.1016/j.anucene.2012.05.010

    Article  CAS  Google Scholar 

  60. Cao Q, Liu Y, Kong X, Zhou L, Guo H (2013) Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J Radioanal Nucl Chem 298(2):1137–1147. https://doi.org/10.1007/s10967-013-2500-4

    Article  CAS  Google Scholar 

  61. Liu H-J, Jing P-F, Liu X-Y, Du K-J, Sun Y-K (2016) Synthesis of beta-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 310(1):263–270. https://doi.org/10.1007/s10967-016-4792-7

    Article  CAS  Google Scholar 

  62. Liu S, Yang Y, Liu T, Wu W (2017) Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized polystyrene-co-maleic anhydride) resin. J Colloid Interface Sci 497:385–392. https://doi.org/10.1016/j.jcis.2017.02.062

    Article  CAS  PubMed  Google Scholar 

  63. Guo X, Feng Y, Ma L, Gao D, Jing J, Yu J, Sun H, Gong H, Zhang Y (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. https://doi.org/10.1016/j.apsusc.2017.01.050

    Article  CAS  Google Scholar 

  64. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429(2):237–246. https://doi.org/10.1016/s0003-2670(00)01299-x

    Article  CAS  Google Scholar 

  65. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39(1):42–48. https://doi.org/10.1016/j.anucene.2011.09.006

    Article  CAS  Google Scholar 

  66. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52(30):10152–10159. https://doi.org/10.1021/ie3024438

    Article  CAS  Google Scholar 

  67. Zou WH, Zhao L, Zhu L (2012) Efficient uranium(VI) biosorption on grapefruit peel: kinetic study and thermodynamic parameters. J Radioanal Nucl Chem 292(3):1303–1315. https://doi.org/10.1007/s10967-011-1602-0

    Article  CAS  Google Scholar 

  68. Hamza MF, Abdel-Rahman AAH, Guibal E (2018) Magnetic glutamine-grafted polymer for the sorption of U(VI), Nd(III) and Dy(III). J Chem Technol Biotechnol 93(6):1790–1806

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Egyptian Nuclear Materials Authority. Special dedication is given to memory of Prof. Dr. N. El-Hazek and Prof. Dr. Mohamed Abdel Hakam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed F. Hamza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.F. Grafting of quaternary ammonium groups for uranium(VI) recovery: application on natural acidic leaching liquor. J Radioanal Nucl Chem 322, 519–532 (2019). https://doi.org/10.1007/s10967-019-06729-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06729-w

Keywords

Navigation