Skip to main content
Log in

Rapid synthesis of carbon materials by microwave-assisted hydrothermal method at low temperature and its adsorption properties for uranium (VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the effect of synthesis temperature and time on the morphology and structure of the carbon microspheres was investigated. The comparation between traditional hydrothermal and microwave-assisted hydrothermal method for preparing carbon materials was carried out. Finally, the adsorption performance of the material for uranium (VI) was tested. The results showed that microwave method has better heating rate than conventional hydrothermal method, the carbon material prepared by microwave-assisted hydrothermal method at low temperature and short time has excellent adsorption performance, and the maximum adsorption amount can reach 170.07 mg/g for uranium (VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Li XW, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2018) AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation. Appl Catal B Environ 229:155–162

    Article  CAS  Google Scholar 

  2. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Cheminform 38:3401–3418

    CAS  Google Scholar 

  3. Xu YH, Shan YL, Cong HL, Shen YQ, Yu B (2018) Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Curr Pharm Des 24:4060–4076

    Article  CAS  PubMed  Google Scholar 

  4. Feng TT, Wang JC, Yang J, Wu MQ (2019) Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries. J Mater Sci 54:6461–6470

    Article  CAS  Google Scholar 

  5. Ng SWL, Yilmaz G, Ong WL, Ho GW (2017) One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage. Appl Catal B Environ 220:533–541

    Article  CAS  Google Scholar 

  6. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with moble-metal nanoparticles. Angew Chem -Int Edit. 43(5):597–601

    Article  CAS  Google Scholar 

  7. Jiang LL, Sheng LZ, Fan ZJ (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61:133–158

    Article  CAS  Google Scholar 

  8. Li M, Li W, Liu SX (2012) Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. J Mater Res 27:1117–1123

    Article  CAS  Google Scholar 

  9. Qi YJ, Zhang M, Qi L, Qi Y (2016) Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv 6:20814–20823

    Article  CAS  Google Scholar 

  10. Liu FY, Yu RD, Guo MH (2017) Hydrothermal carbonization of forestry residues: influence of reaction temperature on holocellulose-derived hydrochar properties. J Mater Sci 52:1736–1746

    Article  CAS  Google Scholar 

  11. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  12. Elaigwu SE, Greenway GM (2016) Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol 149:305–312

    Article  CAS  Google Scholar 

  13. Liu FY, Guo MH (2015) Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J Mater Sci 50:1624–1631

    Article  CAS  Google Scholar 

  14. Nizamuddin S, Baloch HA, Siddiqui MTH, Mubarak NM, Tunio MM, Bhutto AW, Jatoi AS, Griffin GJ, Srinivasan MP (2018) An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass. Rev Environ Sci Biotechnol 17:813–837

    Article  CAS  Google Scholar 

  15. Alslaibi TM, Abustan I, Ahmad MA, Abu Foul A (2013) A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. J Chem Technol Biotechnol 88:1183–1190

    Article  CAS  Google Scholar 

  16. Ge XY, Tian F, Wu ZL, Yan YJ, Cravotto G, Wu ZS (2015) Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: microwave power effects. Chem Eng Process Process Intensif 91:67–77

    Article  CAS  Google Scholar 

  17. Zhang JT, An Y, Borrion A, He WZ, Wang N, Chen YR, Li GM (2018) Process characteristics for microwave assisted hydrothermal carbonization of cellulose. Bioresour Technol 259:91–98

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang XP, Huang XZ, Ruan T, Qiu XQ (2015) Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal. Water Sci Technol 71:390–396

    Article  CAS  PubMed  Google Scholar 

  19. Gao Y, Liu YH, Zhu GK, Xu JY, Xu H, Yuan QX, Zhu YZ, Sarma J, Wang YF, Wang J, Ji L (2018) Microwave-assisted hydrothermal carbonization of dairy manure: chemical and structural properties of the products. Energy 165:662–672

    Article  CAS  Google Scholar 

  20. Elaigwu SE, Greenway GM (2016) Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J Anal Appl Pyrolysis 118:1–8

    Article  CAS  Google Scholar 

  21. Cai HM, Lin XY, Tian LY, Luo XG (2016) One-step hydrothermal synthesis of carbonaceous spheres from glucose with an aluminum chloride catalyst and its adsorption characteristic for Uranium (VI). Ind Eng Chem Res 55:9648–9656

    Article  CAS  Google Scholar 

  22. Zheng ZY, Wang YQ, Zhao WW, Xiong GX, Cao XH, Dai Y, Le ZG, Yu SL, Zhang ZB, Liu YH (2017) Adsorptive removal of uranyl ions in aqueous solution using hydrothermal carbon spheres functionalized with 4-aminoacetophenone oxime group. J Radioanal Nucl Chem 312:187–198

    Article  CAS  Google Scholar 

  23. Zhao WH, Lin XY, Cai HM, Mu T, Luo XG (2017) Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium (VI). Ind Eng Chem Res 56:12745–12754

    Article  CAS  Google Scholar 

  24. Chen Z, Ma LJ, Li SQ, Geng JX, Song Q, Liu J, Wang CL, Wang H, Li J, Qin Z, Li SJ (2011) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257:8686–8691

    Article  CAS  Google Scholar 

  25. JoséV I, Edgar M, Rafael M (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24:1–735

    Article  Google Scholar 

  26. Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48:1990–1998

    Article  CAS  Google Scholar 

  27. Song Q, Ma LJ, Liu J, Bai CY, Geng JX, Wang H, Li B, Wang LY, Li SJ (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    Article  CAS  PubMed  Google Scholar 

  28. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203

    Article  CAS  PubMed  Google Scholar 

  29. Yu J, Luo XG, Liu B, Zhou J, Feng J, Zhu WK, Wang SL, Zhang YD, Lin XY, Chen P (2018) Bayberry Tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal uranyl ion from radioactive wastewater. J Mater Chem A 6:15359–15370

    Article  CAS  Google Scholar 

  30. Fuertes AB, Arbestain MC, Sevilla M, Macia-Agullo JA, Fiol S, Lopez R, Smernik RJ, Aitkenhead WP, Arce F, Macias F (2009) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Chemistry 15:4195–4203

    Article  CAS  PubMed  Google Scholar 

  31. Mi YZ, Hu WB, Dan YM, Liu YL (2008) Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett 62:1194–1196

    Article  CAS  Google Scholar 

  32. Zhang M, Yang H, Liu YN, Sun XD, Zhang DK, Xue DF (2012) Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon 50:2155–2161

    Article  CAS  Google Scholar 

  33. Guiotoku M, Maia CMBF, Rambo CR, Hotza D (2011) Synthesis of carbon-based materials by microwave hydrothermal processing. In: Chandra U (ed) Microwave heating. InTech, New York

    Google Scholar 

  34. Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, Tanksale A (2018) Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ Sci Pollut Res 25:17529–17539

    Article  CAS  Google Scholar 

  35. Tang JQ, Guo XW, Zhu LF, Hu CW (2015) Mechanistic study of glucose-to-fructose isomerization in water catalyzed by [Al(OH)2(aq)]+. ACS Catal 5:5097–5103

    Article  CAS  Google Scholar 

  36. Istasse T, Bockstal L, Richel A (2018) Production of 5-hydroxymethylfurfural from d-fructose in low-transition-temperature mixtures enhanced by chloride anions and low amounts of organic acids. ChemPlusChem 83:1135–1143

    Article  CAS  Google Scholar 

  37. De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 13:2859–2868

    Article  CAS  Google Scholar 

  38. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS C-13 NMR investigations. J Phys Chem C 113:9644–9654

    Article  CAS  Google Scholar 

  39. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Edit 43:597–601

    Article  CAS  Google Scholar 

  40. Ding CC, Cheng WC, Nie XQ, Yi FC (2017) Synergistic mechanism of U(VI) sequestration by magnetite-graphene oxide composites: evidence from spectroscopic and theoretical calculation. Chem Eng J 324:113–121

    Article  CAS  Google Scholar 

  41. Zhang ZB, Nie WB, Li Q, Xiong GX, Cao XH, Liu YH (2013) Removal of uranium (VI) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air. J Radioanal Nucl Chem 298:361–368

    Article  CAS  Google Scholar 

  42. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoud ME, Khalifa MA, El Wakeel YM, Header MS, Abdel-Fattah TM (2017) Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution. J Nucl Mater 487:13–22

    Article  CAS  Google Scholar 

  44. Wu LP, Lin XY, Du XC, Luo XG (2016) Biosorption of uranium (VI) from aqueous solution using microsphere adsorbents of carboxymethyl cellulose loaded with aluminum(III). J Radioanal Nucl Chem 310:611–622

    Article  CAS  Google Scholar 

  45. Zhang YH, Lin XY, Zhou QS, Luo XG (2016) Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginate-La particles fabricated via electro-coextrusion. Appl Surf Sci 389:34–45

    Article  CAS  Google Scholar 

  46. Liu YH, Wang YQ, Zhang ZB, Cao XH, Nie WB, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74

    Article  CAS  Google Scholar 

  47. Lai ZJ, Zhang ZB, Cao XH, Dai Y, Hua R, Le ZG, Luo MB, Liu YH (2016) Synthesis of novel functional hydrothermal carbon spheres for removal of uranium from aqueous solution. J Radioanal Nucl Chem 310:1335–1344

    Article  CAS  Google Scholar 

  48. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  PubMed  Google Scholar 

  49. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  PubMed  Google Scholar 

  50. Qian YX, Yuan YH, Wang HL, Liu H, Zhang JX, Shi S, Guo ZH, Wang N (2018) Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J Mater Chem A 6:24676–24685

    Article  CAS  Google Scholar 

  51. Li B, Ma LJ, Tian Y, Yang XD, Li J, Bai CY, Yang XY, Zhang S, Li SJ, Jin YD (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49

    Article  CAS  PubMed  Google Scholar 

  52. Li YH, Ding J, Luan ZK, Di ZC, Zhu YF, Xu CL, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  53. Guvendiren M, Messersmith PB, Shull KR (2008) Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromol 9:122–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the technology support of Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology. This work was sponsored by Longshan academic talent research support plan of Southwest University of Science and Technology (14zg6101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Lin, X., Li, M. et al. Rapid synthesis of carbon materials by microwave-assisted hydrothermal method at low temperature and its adsorption properties for uranium (VI). J Radioanal Nucl Chem 321, 629–646 (2019). https://doi.org/10.1007/s10967-019-06613-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06613-7

Keywords

Navigation