Skip to main content
Log in

Preparation of Chitosan microspheres containing 166Dy/166Ho in vivo generators and their theranostic potential

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chitosan microsphere (MS) loaded with 166Dy/166Ho were designed for therapy of unresectable liver tumor through an in vivo generator system. The mean size of the MS was affected by the stirring rate, concentration of emulsifier and cross-linking agent. The MS have ability to absorb water and ethanol to swell to eightfold their original volume. Importantly, approximately 53.89% ± 2.44 of 166Dy was absorbed into the MS to release in human serum about 8% of the absorbed amount. The advantages of high absorption and low release rate show these MS promising as a potential carrier of an in vivo generator system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8: a

Similar content being viewed by others

References

  1. Mausner LF, Straub RF, Srivastava SC (1989) The in vivo generator for radioimmunotherapy. J Label Compd Radiopharm 26:498–500

    Article  Google Scholar 

  2. Edem PE, Fonslet J, Kjaer A, Herth M, Severin G (2016) In vivo radionuclide generators for diagnostics and therapy. Bioinorg Chem Appl 2016:6148357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Knapp FF (2003) Radionuclide gerators. In: Attila Vertes FR, Nagy S, Klencsar Z, Lovas RG (eds) Hand book of nuclear chemistry: radiochemistry and radiopharmaceutical chemistry in life sciences, vol 4, 2nd edn. Kluwer Academic, Dordrecht, pp 1935–1976

    Google Scholar 

  4. Kaplan E, Mayron LW, Barnes WE, Colombertti LG, Friedman AM, Gindler JE (1974) Continuous radionuclide generation. Ll. Scintigraphic definition of capillary exchange by rapid decay of 81mKr and its applications. J Nucl Med 15:874–879

    CAS  PubMed  Google Scholar 

  5. Jones T, Matthews CM (1971) Tissue Perfusion measured using the Ratio of 81Rb to 81mKr incorporated in the Tissue. Nature 230(5289):119–120

    Article  CAS  PubMed  Google Scholar 

  6. Calonder C, Würtenberger PI, Maguire RP, Pellikka R, Leenders KL (1999) Kinetic modeling of 52Fe/52mMn-citrate at the blood-brain barrier by positron emissioin tomography. J Neurochem 73(5):2047–5055

    CAS  PubMed  Google Scholar 

  7. Lubberink M, Tolmachev V, Sbeshara H Lundqvist (1999) Quantification aspects of patient studies with 52Fe in positron emission tomography. Appl Radiat Isot 51(6):707–715

    Article  CAS  PubMed  Google Scholar 

  8. Bruehlmeier M, Leenders KL, Vontobel P, Calnder C, Antonini A, Weindl A (2000) Increased cerebral iron uptake in Wilson’s disease: a 52Fe-citrate PET study. J Nucl Med 41:781–787

    CAS  PubMed  Google Scholar 

  9. Gholipour N, Jalilian AR, Fazaeli Y, Sabzevari O, Moradkhani S, Bolourinovin F, Khalaj A (2014) Development of [62Zn/62Cu]-DOTA-rituximab as a possible novle in vivo PET generator for anti-CD20 antigen imaging. Radiochim Acta 102:1035–1045. https://doi.org/10.1515/ract-2013-2196

    Article  CAS  Google Scholar 

  10. Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA (2003) Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Can Res 63:5084–5090

    CAS  Google Scholar 

  11. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH (2002) Significant antitumor effect from bone-seeking, α-particle-emitting 223Ra demonstrated in an experimental skeletal metatases model. Can Res 62:3120–3125

    CAS  Google Scholar 

  12. Bartos B, Lyczko K, Kasperek A, Krajewski S, Bilewicz A (2013) Search of ligands suitable for 212Pb/212Bi in vivo generators. J Radioanal Nucl Chem 295:205–209. https://doi.org/10.1007/s10967-012-2238-4

    Article  CAS  PubMed  Google Scholar 

  13. Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF Jr (1994) Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets. Anal Chem 66:4272–4277

    Article  CAS  Google Scholar 

  14. Smith SV, Di Bartolo N, Mirzadeh S, Lambrecht RM, Knapp FF Jr, Hetherington EL (1995) [166Dy]dysprosium/[166Ho]holmium in vivo generator. Appl Radiat Isot 46(8):759–764

    Article  PubMed  Google Scholar 

  15. Martha PL, Guillermina FF, de Murphy CA, Pedro MR, Josefa PR, Eduardo MS, Omar HO (2004) Cytotoxic and genotoxic efffect of the [166Dy]Dy/166Ho-EDTMP in vivo generator system in mice. Nucl Med Biol 31:1079–1085. https://doi.org/10.1016/j.nucmedbio.2004.08.010

    Article  CAS  Google Scholar 

  16. Zeevaart JR, Szücs Z, Takacs S, Jarvis N, Jansen D (2012) Recoil and conversion electron considerations of the 166Dy/166Ho in vivo generator. Radiochim Acta 100:109–113. https://doi.org/10.1524/ract.2011.1841

    Article  CAS  Google Scholar 

  17. Yu V, Knyazev MMN (1977) The optical properties of rare earth metals. Phys Status Solidi (b) 80:11–29

    Article  Google Scholar 

  18. Soderlind P, Turchi PE, Landa A, Lordi V (2014) Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J Phys Condens Matter 26:416001. https://doi.org/10.1088/0953-8984/26/41/416001

    Article  CAS  PubMed  Google Scholar 

  19. Palasz A, Czekaj P (2000) Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 47:1107–1114

    CAS  PubMed  Google Scholar 

  20. Panichev AM (2015) Rare earth elements: review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achiev Life Sci 9:95–103. https://doi.org/10.1016/j.als.2015.12.001

    Article  Google Scholar 

  21. Wen B, Yuan D, Shan XQ, Li FL, Zhang SZ (2001) The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions. Chem Speciat Bioavailab 13(2):39–48. https://doi.org/10.3184/095422901783726825

    Article  CAS  Google Scholar 

  22. He Y, Xue L (2005) Biological effects of rare earth elements and their action mechanisms. J Appl Ecol 10:1983–1989

    Google Scholar 

  23. van de Maat GH, Seevinck PR, Elschot M, Smits MLJ, de Leeuw H, van Het Schip AD, Vente MAD, Zonnenberg BA, de Jong HWAM, Lam MGEH, Viergever MA, van den Bosch MAAJ, Nijsen JFW, Bakker CJG (2013) MRI-based biodistribution assessment of holmium-166 poly(l-lactic acid) microspheres after radiembolisation. Eur Radiol 23:827–835. https://doi.org/10.1007/s00330-012-2648-2

    Article  PubMed  Google Scholar 

  24. Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, van Woudenberg IAS, van Rijk PP, van Het Schip AD (1999) Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med 26:699–704

    Article  CAS  PubMed  Google Scholar 

  25. Vente MAD, Nijsen JF, de Ross R, van Steenbergen MJ, Kaaijk CNJ, Ammerlaan MJJK, de Leege PFA, Hennink WE, van Het Schip AD, Krijger GC (2009) Neutron activation of holmium poly(l-lactic acid) microspheres for hepatic arterial radioembolization: a validation study. Biomed Microdevices 11:763–772. https://doi.org/10.1007/s10544-009-9291-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Norek M, Peters JA (2011) MRI contrast agents based on dysprosium or holmium. Prog Nucl Magn Reson Spectrosc 59:64–82

    Article  CAS  PubMed  Google Scholar 

  27. Hossain KMZ, Patel U, Ahmed I (2015) Development of microspheres for biomedical applications: a review. Prog Biomater 4:1–19. https://doi.org/10.1007/s40204-014-0033-8

    Article  CAS  PubMed  Google Scholar 

  28. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274:1–33. https://doi.org/10.1016/j.ijpharm.2003.12.026

    Article  CAS  PubMed  Google Scholar 

  29. Ofokansi KC, Kenechukwu FC, Isah AB, Okigbo EL (2013) Formulation and evluation of glutaraldehyde-crosslinked chitosan microparticles for the delivery of ibuprofen. Trop J Pharm Res 12:19–25. https://doi.org/10.4314/tjpr.v12i1.4

    Article  CAS  Google Scholar 

  30. Trifkovic KT, Milasinovic NZ, Djordjevic VB, Krusic MTK, Jugovic ZDK, Nedivic VA, Bugarski BM (2014) Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym 111:901–907. https://doi.org/10.1016/j.carbpol.2014.05.053

    Article  CAS  PubMed  Google Scholar 

  31. Ferro-Flores G, Hernández-Oviedo O, de Murphy CA, Tendilla JI, Monroy-Guzmán F, Pedraza-López M, Aldama-Alvarado K (2004) [166Dy]Dy/166Ho hydroxide macroaggregates: an in vivo generator system for radiation synovectomy. Appl Radiat Isot 61:1227–1233. https://doi.org/10.1016/j.apradiso.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki YS, Momose Y, Higashi N, Shigematsu A, Park KB, Kim YM, Kim JR, Ryu JM (1998) Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J Nucl Med 39:2161–2166

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Atomic Energy Research Institute major project: Development of Radioisotope Production and Application Technology (525330-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghyuk Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, BB., Choi, K. Preparation of Chitosan microspheres containing 166Dy/166Ho in vivo generators and their theranostic potential. J Radioanal Nucl Chem 317, 1123–1132 (2018). https://doi.org/10.1007/s10967-018-5984-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5984-0

Keywords

Navigation