Skip to main content
Log in

Radiation-assisted synthesis of Prussian blue nanoparticles using sugar as stabilizer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prussian blue (PB) nanoparticles were successfully synthesized via a γ radiation route in aqueous solutions using sugar as stabilizer at room temperature and ambient pressure. The particle size and shape can be affected by stabilizer and radiation conditions. When the stabilizer was sucrose and the radiation dose was 30 kGy, well-dispersed and uniform PB nanoparticles were obtained, which are 100–200 nm in diameter. They exhibit good ions exchange properties and have maximal Cs+ adsorption capacity of 125.8 mg g−1, which may be applied in radioactive wastewater treatments, ion battery etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguila D, Prado Y, Koumousi ES, Mathoniere C, Clerac R (2016) Switchable Fe/Co Prussian blue networks and molecular analogues. Chem Soc Rev 45(1):203–224

    Article  CAS  Google Scholar 

  2. Grandjean F, Samain L, Long GJ (2016) Characterization and utilization of Prussian blue and its pigments. Dalton Trans 45(45):18018–18044

    Article  CAS  Google Scholar 

  3. Kong B, Selomulya C, Zheng GF, Zhao DY (2015) New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 44(22):7997–8018

    Article  CAS  Google Scholar 

  4. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. J Mater Chem 22(35):18261–18267

    Article  CAS  Google Scholar 

  5. Takahashi A, Minami N, Tanaka H, Sue K, Minami K, Parajuli D, Lee KM, Ohkoshi SI, Kurihara M, Kawamoto T (2015) Efficient synthesis of size-controlled open-framework nanoparticles fabricated with a micro-mixer: route to the improvement of Cs adsorption performance. Green Chem 17(8):4228–4233

    Article  CAS  Google Scholar 

  6. You Y, Wu XL, Yin YX, Guo YG (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7(5):1643–1647

    Article  CAS  Google Scholar 

  7. Cai XJ, Gao W, Zhang LL, Ma M, Liu TZ, Du WX, Zheng YY, Chen HR, Shi JL (2016) Enabling Prussian blue with tunable localized surface plasmon resonances: simultaneously enhanced dual-mode imaging and tumor photothermal therapy. ACS Nano 10(12):11115–11126

    Article  CAS  Google Scholar 

  8. Fiorito PA, Goncales VR, Ponzio EA, de Torresi SIC (2005) Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem Commun 3(3):366–368

    Article  Google Scholar 

  9. Manivannan S, Kang I, Kim K (2016) In situ growth of Prussian blue nanostructures at reduced graphene oxide as a modified platinum electrode for synergistic methanol oxidation. Langmuir 32(7):1890–1898

    Article  CAS  Google Scholar 

  10. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242(15):127–135

    Article  CAS  Google Scholar 

  11. Jang SC, Haldorai Y, Lee GW, Hwang SK, Han YK, Roh C, Yun SH (2015) Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive 137Cs. Sci Rep 5:17510

    Article  CAS  Google Scholar 

  12. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182(1–3):225–231

    Article  CAS  Google Scholar 

  13. Sasaki T, Tanaka S (2012) Magnetic separation of cesium ion using Prussian blue modified magnetite. Chem Lett 41(1):32–34

    Article  CAS  Google Scholar 

  14. Hu M, Jiang JS, Ji RP, Zeng Y (2009) Prussian Blue mesocrystals prepared by a facile hydrothermal method. CrystEngComm 11(11):2257–2259

    Article  CAS  Google Scholar 

  15. Ming H, Torad NLK, Chiang YD, Wu KCW, Yamauchi Y (2012) Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm 14(10):3387–3396

    Article  CAS  Google Scholar 

  16. Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51(4):984–988

    Article  CAS  Google Scholar 

  17. Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345

    Article  CAS  Google Scholar 

  18. Uemura T, Kitagawa S (2003) Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125(26):7814–7815

    Article  CAS  Google Scholar 

  19. Bu FX, Hu M, Zhang W, Meng Q, Xu L, Jiang DM, Jiang JS (2015) Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem Commun 51(99):17568–17571

    Article  CAS  Google Scholar 

  20. Zhang W, Zhao YY, Malgras V, Ji QM, Jiang DM, Qi RJ, Ariga K, Yamauchi Y, Liu J, Jiang JS, Hu M (2016) Synthesis of monocrystalline nanoframes of Prussian blue analogues by controlled preferential etching. Angew Chem Int Edit 55(29):8228–8234

    Article  CAS  Google Scholar 

  21. Li XN, Yuan LZ, Wang JH, Jiang LH, Rykov AI, Nagy DL, Bogdan C, Ahmed MA, Zhu KY, Sun GQ, Yang WS (2016) A “copolymer-co-morphology” conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides. Nanoscale 8(4):2333–2342

    Article  CAS  Google Scholar 

  22. Cai XJ, Gao W, Ma M, Wu MY, Zhang LL, Zheng YY, Chen HR, Shi JL (2015) A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv Mater 27(41):6536

    Article  Google Scholar 

  23. Sheng QL, Liu RX, Zheng JB (2012) Prussian blue nanospheres synthesized in deep eutectic solvents. Nanoscale 4(21):6880–6886

    Article  CAS  Google Scholar 

  24. Ge XP, Wang MZ, Yuan Q, Wang H, Ge XW (2009) The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization. Chem Commun 19(19):2765–2767

    Article  Google Scholar 

  25. Yu CH, Zhao L, Wang SJ, Cui ZP, Peng J, Li JQ, Zhai ML, Huang JB (2013) One-step radiation-induced construction of multi-responsive self-assemblies using simple cyclic ethers. Soft Matter 9(25):5959–5965

    Article  CAS  Google Scholar 

  26. Gao QH, Hu JT, Li R, Pang LJ, Xing Z, Xu L, Wang MH, Guo XJ, Wu GZ (2016) Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via gamma-radiation-induced graft polymerization. Carbohydr Polym 149:308–316

    Article  CAS  Google Scholar 

  27. Wang L, Magliocca E, Cunningham EL, Mustain WE, Poynton SD, Escudero-Cid R, Nasef MM, Ponce-Gonzalez J, Bance-Souahli R, Slade RCT, Whelligan DK, Varcoe JR (2017) An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem 19(3):831–843

    Article  CAS  Google Scholar 

  28. Alrehaily LM, Joseph JM, Wren JC (2015) Radiation-induced formation of Co3O4 nanoparticles from Co2+(aq): probing the kinetics using radical scavengers. Phys Chem Chem Phys 17(37):24138–24150

    Article  CAS  Google Scholar 

  29. Ghosh S, Datta A, Biswas N, Datta A, Saha A (2013) Radiation-induced synthesis of self-organized assemblies of functionalized inorganic-organic hybrid nanocomposites. RSC Adv 3(34):14406–14412

    Article  CAS  Google Scholar 

  30. Iyengar GA, Ko KR, Lee SH, Shanmugasundaram K, Veres M, Lee KP (2012) Radiation induced preparation of new multifunctional nanobiowebs. Radiat Phys Chem 81(9):1407–1410

    Article  Google Scholar 

  31. Jovanovic SP, Syrgiannis Z, Markovic ZM, Bonasera A, Kepic DP, Budimir MD, Milivojevic DD, Spasojevic VD, Dramicanin MD, Pavlovic VB, Markovie BMT (2015) Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Appl Mater Interfaces 7(46):25865–25874

    Article  CAS  Google Scholar 

  32. Liu HZ, Lv M, Deng B, Li JY, Yu M, Huang Q, Fan CH (2014) Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Sci Rep 4:5920

    Article  Google Scholar 

  33. Chang L, Chang SQ, Han W, Chen W, Li Z, Zhang Z, Dai YD, Chen D (2016) gamma-Radiation fabrication of porous permutite/carbon nanobeads/alginic acid nanocomposites and their adsorption properties for Cs+. RSC Adv 6(90):86829–86835

    Article  CAS  Google Scholar 

  34. Chang SQ, Dai YD, Kang B, Han W, Chen D (2009) Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700

    Article  CAS  Google Scholar 

  35. Chang SQ, Kang B, Dai YD, Zhang HX, Chen D (2011) One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a gamma-radiation route. Nanoscale Res Lett 6:1–7

    Article  Google Scholar 

  36. Chang SQ, Kang B, Dai YD, Chen D (2009) Synthesis of antimicrobial silver nanoparticles on silk fibers via gamma-radiation. J Appl Polym Sci 112(4):2511–2515

    Article  CAS  Google Scholar 

  37. Eaton WA, George P, Hanania GIH (1967) Thermodynamic aspects of the potassium hexacyano-ferrate(III)-(II) system. I. Ion association. J Phys Chem 71(7):2016–2021

    Article  CAS  Google Scholar 

  38. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860

    Article  CAS  Google Scholar 

  39. Yang HJ, Sun L, Zhai JL, Li HY, Zhao Y, Yu HW (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332

    Article  CAS  Google Scholar 

  40. Zhao G, Feng JJ, Zhang QL, Li SP, Chen HY (2005) Synthesis and characterization of Prussian Blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159

    Article  CAS  Google Scholar 

  41. Zhou PH, Xue DS, Luo HQ, Chen XG (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays. Nano Lett 2(8):845–847

    Article  CAS  Google Scholar 

  42. Yi R, Ye G, Wu F, Wen M, Feng X, Chen J (2014) ChemInform abstract: highly efficient removal of 137Cs in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure. RSC Adv 4(71):37600–37608

    Article  CAS  Google Scholar 

  43. Yang H, Li H, Zhai J, Sun L, Zhao Y, Yu H (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246(16):10–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for Central Universities (NJ20150022, NP2015207), National Natural Science Foundation of China (11105073, 11575086), Jiangsu Cooperative Innovation Fund (BY2013003-09) and project funded by Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuquan Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Chang, S., Han, W. et al. Radiation-assisted synthesis of Prussian blue nanoparticles using sugar as stabilizer. J Radioanal Nucl Chem 314, 289–295 (2017). https://doi.org/10.1007/s10967-017-5397-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5397-5

Keywords

Navigation