Skip to main content
Log in

Hydrothermal synthesis of carbon microsphere from glucose at low temperature and its adsorption property of uranium(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The carbon microsphere which possesses a large number of carboxyl groups on its surface was synthesized by hydrothermal treatment from aqueous glucose solutions at 130 °C and further calcination. The results showed that the maximum adsorption capacity (163 mg/g) of the carbon microspheres towards U(VI) was obtained, and the adsorption kinetic was well fitted by the pseudo-second-order kinetic model. Meanwhile, the adsorption isotherm was better described by the Langmuir model. The thermodynamic parameters indicated the adsorption process was an endothermic and spontaneous process. The possible adsorption mechanism of the carbon microspheres for U(VI) involves ion-exchange and coordination reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Donia AM, Atia AA, Moussa EM, El-Sherif AM, El-Magied MOA (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95(3):183–189

    Article  CAS  Google Scholar 

  2. Clark MW, Harrison JJ, Payne TE (2011) The pH-dependence and reversibility of uranium and thorium binding on a modified bauxite refinery residue using isotopic exchange techniques. J Colloid Interface Sci 356(2):699–705

    Article  CAS  Google Scholar 

  3. Liu YH, Wang YQ, Zhang ZB, Cao XH, Nie WB, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74

    Article  CAS  Google Scholar 

  4. Fasfous II, Dawoud JN (2012) Uranium(VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440

    Article  CAS  Google Scholar 

  5. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246–253

    Article  Google Scholar 

  6. Mehta VS, Maillot F, Wang Z, Catalano JG, Giammar DE (2014) Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate. Chem Geol 364:66–75

    Article  CAS  Google Scholar 

  7. Bertrand M, Plasari E, Lebaigue O, Baron P, Lamarque N, Ducros F (2012) Hybrid LES–multizonal modelling of the uranium oxalate precipitation. Chem Eng Sci 77:95–104

    Article  CAS  Google Scholar 

  8. Zhou C, Ontiveros-Valencia A, de Saint Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014) Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res 64:255–264

    Article  CAS  Google Scholar 

  9. Hoyer M, Zabelt D, Steudtner R, Brendler V, Haseneder R, Repke JU (2014) Influence of speciation during membrane treatment of uranium contaminated water. Sep Purif Technol 132:413–421

    Article  CAS  Google Scholar 

  10. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446

    Article  CAS  Google Scholar 

  11. Bartosiewicz I, Chwastowska J, Polkowska-Motrenko H (2015) Fractionation studies of trace elements in Polish uranium-bearing geological materials: potential environmental impact. Int J Environ Anal Chem 95(2):121–134

    Article  CAS  Google Scholar 

  12. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113(4):860–864

    Article  CAS  Google Scholar 

  13. Zhang W, Ye G, Chen J (2016) New insights into the uranium adsorption behavior of mesoporous SBA-15 silicas decorated with alkylphosphine oxide ligands. RSC Adv 6(2):1210–1217

    Article  CAS  Google Scholar 

  14. Valizadeh S, Younesi H, Bahramifar N (2016) Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: batch and fixed-bed column adsorption process. Environ Nanotechnol Monit Manag 6:1–13

    Article  Google Scholar 

  15. Yang J, Yu M, Chen W (2015) Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J Ind Eng Chem 21:414–422

    Article  CAS  Google Scholar 

  16. Chen L, Ji T, Mu L, Shi Y, Brisbin L, Guo Z, Zhu J (2016) Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Adv 6(3):2259–2269

    Article  CAS  Google Scholar 

  17. Harris PJ (2007) Solid state growth mechanisms for carbon nanotubes. Carbon 45(2):229–239

    Article  CAS  Google Scholar 

  18. Nie BW, Zhang ZB, Cao XH, Liu YH, Liang P (2013) Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295(1):663–670

    Article  CAS  Google Scholar 

  19. Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2015) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85

    Article  CAS  Google Scholar 

  20. Ilaiyaraja P, Deb AKS, Sivasubramanian K, Ponraju D, Venkatraman B (2013) Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. J Hazard Mater 250:155–166

    Article  Google Scholar 

  21. Anirudhan TS, Deepa JR (2015) Synthesis and characterization of multi-carboxyl-functionalized nanocellulose/nanobentonite composite for the adsorption of uranium(VI) from aqueous solutions: kinetic and equilibrium profiles. Chem Eng J 273:390–400

    Article  CAS  Google Scholar 

  22. Anirudhan TS, Nima J, Divya PL (2015) Adsorption and separation behavior of uranium(VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer. J Environ Chem Eng 3(2):1267–1276

    Article  CAS  Google Scholar 

  23. Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li S (2015) Three novel triazine-based materials with different O/S/N set of donor atoms: one-step preparation and comparison of their capability in selective separation of uranium. J Hazard Mater 300:368–377

    Article  CAS  Google Scholar 

  24. Zhuang ZH, Yang ZG (2009) Preparation and characterization of colloidal carbon sphere/rigid polyurethane foam composites. J Appl Polym Sci 114(6):3863–3869

    Article  CAS  Google Scholar 

  25. Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48(7):1990–1998

    Article  CAS  Google Scholar 

  26. Aydıncak K, Yumak T, Sınag A, Esen B (2012) Synthesis and characterization of carbonaceous materials from saccharides (glucose and lactose) and two waste biomasses by hydrothermal carbonization. Ind Eng Chem Res 51(26):9145–9152

    Article  Google Scholar 

  27. Demir-Cakan R, Baccile N, Antonietti M, Titirici MM (2009) Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem Mater 21(3):484–490

    Article  CAS  Google Scholar 

  28. Makowski P, Cakan RD, Antonietti M, Goettmann F, Titirici MM (2008) Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem Commun 8:999–1001

    Article  Google Scholar 

  29. Guo SR, Gong JY, Jiang P, Wu M, Lu Y, Yu SH (2008) Biocompatible, luminescent silver@ phenol formaldehyde resin core/shell nanospheres: large-scale synthesis and application for in vivo bioimaging. Adv Funct Mater 18(6):872–879

    Article  CAS  Google Scholar 

  30. Zhang ZB, Liu YH, Cao XH, Liang P (2013) Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution. J Radioanal Nucl Chem 295(3):1775–1782

    Article  CAS  Google Scholar 

  31. Liu S, Sun J, Huang Z (2010) Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method. J Hazard Mater 173(1):377–383

    Article  CAS  Google Scholar 

  32. Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386(1):291–299

    Article  CAS  Google Scholar 

  33. Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N (1996) Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour Technol 58(2):197–202

    Article  CAS  Google Scholar 

  34. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem-Eur J 15(16):4195–4203

    Article  CAS  Google Scholar 

  35. Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735

    Article  CAS  Google Scholar 

  36. Lua AC, Yang T (2004) Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J Colloid Interface Sci 274(2):594–601

    Article  CAS  Google Scholar 

  37. Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Li S (2011) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257(20):8686–8691

    Article  CAS  Google Scholar 

  38. Aroua MK, Leong SPP, Teo LY, Yin CY, Daud WMAW (2008) Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode. Bioresour Technol 99(13):5786–5792

    Article  CAS  Google Scholar 

  39. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176(1):119–124

    Article  CAS  Google Scholar 

  40. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313

    Article  CAS  Google Scholar 

  41. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    Article  CAS  Google Scholar 

  42. Kilislioglu A, Bilgin B (2003) Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot 58(2):155–160

    Article  CAS  Google Scholar 

  43. Bhatnagar A, Jain AK (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 281(1):49–55

    Article  CAS  Google Scholar 

  44. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441

    Article  CAS  Google Scholar 

  45. Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Electrosorption of uranium on carbon fibers as a means of environmental remediation. Fuel Process Technol 68(3):189–208

    Article  CAS  Google Scholar 

  46. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  47. Moreno-Castilla C, Álvarez-Merino MA, Pastrana-Martínez LM, López-Ramón MV (2010) Adsorption mechanisms of metal cations from water on an oxidized carbon surface. J Colloid Interface Sci 345(2):461–466

    Article  CAS  Google Scholar 

  48. Yuan LY, Liu YL, Shi WQ, Li ZJ, Lan JH, Feng YX, Chai ZF (2012) A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J Mater Chem 22(33):17019–17026

    Article  CAS  Google Scholar 

  49. Guvendiren M, Messersmith PB, Shull KR (2007) Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9(1):122–128

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Engineering Research Center for Biomass Materials, Ministry of Education, China (12zxbk08) and Postgraduate Innovation Fund Project by Southwest University of Science and Technology (14ycx015). Thanks for the technology support of Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Lin, X., Qin, Y. et al. Hydrothermal synthesis of carbon microsphere from glucose at low temperature and its adsorption property of uranium(VI). J Radioanal Nucl Chem 311, 695–706 (2017). https://doi.org/10.1007/s10967-016-5106-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5106-9

Keywords

Navigation