Skip to main content
Log in

Sorption of plutonium to bacteria and fungi isolated from groundwater and clay samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Preliminary studies of Pu(V) sorption to site-specific microorganisms isolated from the Triassic clay selected as an engineered barrier for the near surface low and intermediate level radioactive waste repository and from groundwater at the expected site were carried out. Adsorption of Pu(V) by bacteria attained the maxima values of 82–84 % at pH 6–7. The maximum adsorption values of Pu of about 100 % were found for Penicillium chrysogenum at pH 4.1. Bioreduction of Pu(V) to Pu(IV) by Bacillus cereus was observed, while any Pu(III) was not found in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  2. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  3. Brookshaw DR, Pattrick RAD, Lloyd JR, Vaughan DJ (2012) Microbial effects on mineral radionuclide interactions and radionuclide solid-phase capture processes. Mineral Mag 76(3):777–806

    Article  CAS  Google Scholar 

  4. Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6(4):349–360

    Article  Google Scholar 

  5. Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J, Li N (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12

    Article  CAS  Google Scholar 

  6. Francis AJ (2015) Microbes affect the speciation of various uranium compounds in wastes and soils. In: Merkel BJ, Arab A (eds) Uranium-past and future challenges. Springer, Switzerland

    Google Scholar 

  7. Hirose K, Tanoue E (2001) Strong ligands for thorium complexation in marine bacteria. Mar Environ Res 51:95–112

    Article  CAS  Google Scholar 

  8. Rusin PA, Quintana L, Brainard JR, Strietelmeier BA, Tait CD, Ekberg SA, Palmer PD, Newton TW, Clark DL (1991) Solubilization of plutonium hydrous oxide by iron-reducing bacteria. Environ Sci Technol 28:1686–1690

    Article  Google Scholar 

  9. Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 73:5897–5903

    Article  CAS  Google Scholar 

  10. Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H (2009) Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 75(11):3641–3647

    Article  CAS  Google Scholar 

  11. Renshaw JC, Law N, Geissler A, Livens FR, Lloyd JR (2009) Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium. Biogeochemistry 94:191–196

    Article  CAS  Google Scholar 

  12. Francis AJ, Dodge CJ, Gillow JB (2008) Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions. Environ Sci Technol 42:2355–2360

    Article  CAS  Google Scholar 

  13. Deo RP, Rittmann BE, Reed DT (2011) Bacterial Pu(V) reduction in the absence and presence of Fe(III)–NTA: modeling and experimental approach. Biodegradation 22:921–929

    Article  CAS  Google Scholar 

  14. Reed DT, Pepper SE, Richmann MK, Smith G, Deo R, Rittmann BE (2007) Subsurface bio-mediated reduction of higher-valent uranium and plutonium. J Alloys Compd 444–445:376–382

    Article  Google Scholar 

  15. Ohnuki T, Kozai N, Sakamoto F, Ozaki T, Nankawa T, Suzuki Y, Francis AJ (2010) Association of actinides with microorganisms and clay: implications for radionuclide migration from waste-repository sites. Geomicrobiol J 27:225–230

    Article  CAS  Google Scholar 

  16. Lujanienė G, Šapolaitė J, Amulevičius AS, Mažeika K, Motiejūnas S (2006) Retention of cesium, plutonium and americium by engineered and natural barriers. Czechoslov J Phys 56(4):103–110

    Article  Google Scholar 

  17. Lujanienė G, Šapolaitė J, Radžiūtė E, Aninkevičius V (2009) Plutonium oxidation state distribution in natural clay and goethite. J Radioanal Nucl Chem 282:793–797

    Article  Google Scholar 

  18. Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49

    Article  Google Scholar 

  19. Lujanienė G, Štamberg K, Pakštas V, Juškėnas R, Kulakauskaitė I, Šemčuk S, Mažeika K, Vopalka D (2015) Study of Pu sorption behavior in natural clay. J Radioanal Nucl Chem 304:53–59

    Article  Google Scholar 

  20. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44(2):231–242

    Article  CAS  Google Scholar 

  21. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  22. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  23. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic Press, London

    Google Scholar 

  24. Samson A, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Stud Mycol 49:1–257

    Google Scholar 

  25. Bertrand PA, Choppin GR (1982) Separation of actinides in different oxidation states by solvent extraction. Radiochim Acta 31:135–137

    CAS  Google Scholar 

  26. Andre C, Choppin GR (2000) Reduction of Pu(V) by humic acid. Radiochim Acta 88:613–616

    CAS  Google Scholar 

  27. Morgenstern A, Choppin GR (2002) Kinetics of the oxidation of Pu(IV) by manganese dioxide. Radiochim Acta 90(69–79):33

    Google Scholar 

  28. Xia Y, Rao L, Rai D, Felmy AR (2001) Determining the distribution of Pu, Np and U oxidation states in diluted NaCl and synthetic brine solutions. J Radioanal Nucl Chem 250:27–37

    Article  CAS  Google Scholar 

  29. Nitsche H, Roberts K, Xi R, Prussian T, Becraft K, Al Mahsamid L, Silber HB, Carpenter SA, Gatti RC (1994) Long term plutonium solubility and speciation studies in a synthetic brine. Radiochim Acta 66(67):3–8

    Google Scholar 

  30. Lujanienė G (2011) Determination of Pu, Am and Cm in environmental samples. In: Proceeding international symposium on isotopes in hydrology, marine ecosystems, and climate change studies, Monaco, 27 Mar–1 Apr 2011, IAEA, Vienna, pp 411–418

  31. Ticknor LO, Kolsto AB, Hill KK, Keim P, Laker MT, Tonks M, Jackson PJ (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67(10):4863–4873

    Article  CAS  Google Scholar 

  32. Candelon B, Guilloux K, Ehrlich SD, Sorokin A (2004) Two distinct types of rRNA operons in the Bacillus cereus group. Microbiology 150:601–611. doi:10.1099/mic.0.26870-0

    Article  CAS  Google Scholar 

  33. Mandic-Mulec I, Prosser JI (2011) Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Logan NA, de Vos P (eds) Endospore-forming soil bacteria. Soil biology. Springer, Berlin. doi:10.1007/978-3-642-19577-8_2

    Google Scholar 

  34. Dhakar K, Sharma A, Pandey A (2014) Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World J Microbiol Biotechnol 30(4):1315–1324

    Article  CAS  Google Scholar 

  35. Lemire RJ, Fuger J, Nitsche H, Potter P, Rand MH, Rydberg J, Spahiuk J, Sullivan C, Ullman WJ, Vitorge P, Wanner H (2001) Chemical thermodynamics of neptunium and plutonium, vol 4. Elsevier, Paris

    Google Scholar 

  36. Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273:695–703

    Article  CAS  Google Scholar 

  37. Saleem M, Ahmad S, Ahmad M (2014) Potential of Bacillus cereus for bioremediation of pulp and paper industrial waste. Ann Microbiol 64:823–829

    Article  CAS  Google Scholar 

  38. Rohini B, Jayalakshmi S (2015) Bioremediation potential of Bacillus cereus against copper and other heavy metals. Int J Adv Res Biol Sci 2:200

    Google Scholar 

  39. Shaw DR, Dussan J (2015) Mathematical modelling of toxic metal uptake and efflux pump in metal-resistant bacterium Bacillus cereus isolated from heavy crude oil. Water Air Soil Pollut 226:112

    Article  Google Scholar 

  40. Pan J, Liu R, Tang H (2007) Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J Environ Sci 19:403–440

    Article  Google Scholar 

  41. Das S, Pandey S, Pradhan SK, Sudarshan M, Chakraborty A, Thatoi HN (2015) Genomic analysis and comparative hexavalent chromium reduction potential of predominant Bacillus species isolated from chromite mine soil. Soil Sediment Contam 24:206–221

    Article  CAS  Google Scholar 

  42. Emadzadeha M, Pazoukib M, Abdollahzadeh Sharghib E, Taghavia L (2016) Experimental sudy on the factors affecting hexavalent chromium bioreduction by Bacillus cereus. Int J Eng Trans B 29(02):152–159

    Google Scholar 

  43. Tsezos M (2007) Biological removal of ions: principles and applications. Adv Mater Res 20–21:589–596

    Article  Google Scholar 

  44. Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260

    Article  CAS  Google Scholar 

  45. Icopini GH, Boukhalfa H, Neu MP (2007) Biological reduction of Np(V) and Np(V) citrate by metal reducing bacteria. Environ Sci Technol 41:2764–2769

    Article  CAS  Google Scholar 

  46. Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescence strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  47. Wang PC, Mori T, Toda Ohtake (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    Article  CAS  Google Scholar 

  48. Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  49. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Lujanienė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lujanienė, G., Levinskaitė, L., Kačergius, A. et al. Sorption of plutonium to bacteria and fungi isolated from groundwater and clay samples. J Radioanal Nucl Chem 311, 1393–1399 (2017). https://doi.org/10.1007/s10967-016-5016-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5016-x

Keywords

Navigation