Skip to main content
Log in

A combined spectroscopic and light scattering study of hydrolysis of uranium(VI) leading to colloid formation in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study mainly focuses hydrolysis reactions of uranium(VI) under an ambient atmosphere leading to colloid formation in near neutral solution using light scattering, UV–Vis and FTIR-ATR studies. UV–Vis and IR spectrum was recorded for uranyl solution at different pH range. U(VI) hydrolyzed colloids were detected and it was confirmed by the appearance of a band at 941 cm−1 in the IR spectra. Light scattering measurements were performed on colloidal U(VI) solutions formed at pH range of 7–8. The average particle diameter was determined as 32–36 nm using dynamic light scattering. Well defined colloidal species are formed with no considerable change in particle size with increasing U(VI) concentration. The weight average molecular weight of colloidal species was predicted as 763 Da by Debye plot. The second virial coefficient (A2) was found to be −0.1139 ml g−1 Da. The present study confirms that behaviour of U(VI) contradicts conventional Zr(IV), Th(IV) and Pu(IV) solution chemistry. U(VI) polymerization is less extensive and in neutral solutions it forms only oligomers with 2–3 uranyl units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16. doi:10.1524/ract.2001.89.1.001

    Article  CAS  Google Scholar 

  2. Torapava N, Persson I, Eriksson L, Lundberg D (2009) Hydration and hydrolysis of Th(IV) in aqueous solution and the structures of two crystalline Th(IV) hydrates. Inorg Chem 48:11712–11723. doi:10.1021/ic901763s

    Article  CAS  Google Scholar 

  3. Altmaier M, Gaona X, Fanghanel T (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943. doi:10.1021/cr300379w

    Article  CAS  Google Scholar 

  4. Bhandari D, Wells SM, Retterer ST, Sepaniak MJ (2009) Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman Spectroscopy. Anal Chem 81:8061–8067. doi:10.1021/ac901266f

    Article  CAS  Google Scholar 

  5. Zanker H, Kai-Uwe Ulrich, Opel K, Brendler V (2007) The role of colloids in uranium transport: a comparison of nuclear waste repositories and abandoned uranium mines. In: Cidu R, Frau F (eds) IMWA symposium, Water in mining environments, Italy. http://www.imwa.info/docs/imwa_2007/IMWA2007_Zaenker.pdf, Accessed 30 Apr 2013

  6. Zhao P, Steward SA (1997) Literature review of intrinsic actinide colloids related to spent fuel waste package release rates. Lawrence Livermore National laboratory. doi:10.2172/461376

    Google Scholar 

  7. Guillaumont R, Fanghanel T, Fuger J, Grenthe L, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of Uranium, Neptunium, Plutonium. Americium and Technicium, North-Holland

    Google Scholar 

  8. Eliet V, Bidoglio G (1998) Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO2 particles. Environ Sci Technol 32:3155–3161. doi:10.1021/es970929s. http://lib3.dss.go.th/fulltext/Journal/Environ%20Sci.%20Technology1998-2001/1998/no.20/20,1998%20vol.32,no.20,p3155-3161.pdf. Accessed 30 Apr 2013

    Google Scholar 

  9. Clark DL, Conradson SD, Donohoe RJ, Webster Keogh D, Morris DE, Palmer PD, Rogers RD, Drew Tait C (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures and oxo ligand exchange dynamics. Inorg Chem 38:1456–1466. doi:10.1021/ic981137h

    Article  CAS  Google Scholar 

  10. Steppert M, Walther C, Fuss M, Buchner S (2012) On the polymerization of hexavalent Uranium. An electrospray mass spectrometry study. Rapid Commun Mass Spectrom 26:583–591. doi:10.1002/rcm.6128

    Article  CAS  Google Scholar 

  11. Palmer DA, Nguyen-Trung C (1995) Aqueous uranyl complexes. 3. Potentiometric measurements of the hydrolysis of uranyl(VI) ion at 25 °C. J Solution Chem 24:1281–1291. doi:10.1007/BF00972833

    Article  CAS  Google Scholar 

  12. Eliet V, Grenthe I, Bidoglio G (2000) Time-resolved laser-induced fluorescence of uranium(VI) hydroxo-complexes at different temperatures. Appl Spectrosc 54:99–105. doi:10.1366/0003702001948178

    Article  CAS  Google Scholar 

  13. Toth LM, Begun GM (1981) Raman spectra of uranyl ion and its hydrolysis products in aqueous HNO3. J Phys Chem 85:547–549. doi:10.1021/j150605a018

    Article  CAS  Google Scholar 

  14. Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75. doi:10.1016/S0924-2031(98)00040-X

    Article  CAS  Google Scholar 

  15. Quiles F, Burneau A (2000) Infrared and Raman spectra of uranyl(VI) oxo-hydroxo complexes in acid aqueous solutions: a chemometric study. Vib Spectrosc 23:231–241. doi:10.1016/S0924-2031(00)00067-9

    Article  CAS  Google Scholar 

  16. Muller K, Brendler V, Foerstendorf H (2008) Aqueous Uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-Transform Infrared spectroscopy. Inorg Chem 21:10127–10134. doi:10.1021/ic8005103

    Article  Google Scholar 

  17. Bullock JI (1967) Infrared spectra of some uranyl nitrate complexes. J Inorg Nucl Chem 29:2257–2264. doi:10.1016/0022-1902(67)80280-X

    Article  CAS  Google Scholar 

  18. Rush RM, Johnson JS, Kraus KA (1961) Hydrolysis of Uranium(VI): ultracentrifugation and acidity measurements in chloride solutions. Inorg Chem 1:378–386. doi:10.1021/ic50002a036

    Article  Google Scholar 

  19. Lubal P, Havel J (1997) Spectrophotometric and potentiometric study of Uranyl hydrolysis in perchlorate medium. Is derivative spectrophotometry suitable for search of the chemical model? Chem Papers 51:213–220. http://www.chempap.org/file_access.php?file=514a213.pdf. Accessed 30 Apr 2013

    Google Scholar 

  20. Redkin AF, Wood SA (2007) Uranium(VI) in aqueous solutions at 25 °C and a pressure of 1 bar: insight from experiments and calculations. Geochem Int 45:1111–1123. doi:10.1134/S0016702907110043

    Article  Google Scholar 

  21. Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Speciation study on uranium(VI) hydrolysis at high temperatures and pressures. J Alloy Compd 374:277–282. doi:10.1016/j.jallcom.2003.11.105

    Article  CAS  Google Scholar 

  22. Brooker MH, Huang CH, Sylwestriwicz J (1979) Raman spectroscopic studies of aqueous uranyl nitrate and perchlorate systems. J Inorg Nucl Chem 42:1431–1440. doi:10.1016/0022-1902(80)80109-6

    Article  Google Scholar 

  23. Urban C, Peter S (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross correlation methods. J Coll Interface Sci 207:150–158. doi:10.1006/jcis.1998.5769

    Article  CAS  Google Scholar 

  24. Priyadarshini N, Sampath M, Kumar S, Mudali UK, Natarajan R (2013) Light scattering studies to determine molecular weight of freshly prepared Zr(IV) hydrous polymer. J Radioanal Nucl Chem 293:1093–1096. doi:10.1007/s10967-012-1951-3

    Article  Google Scholar 

  25. Bonnete F, Finet S, Tardieu A (1999) Second virial coefficient: variations with lysozyme crystallization conditions. J Cryst Growth 196:403–414. doi:10.1016/S0022-0248(98)00826-4

    Article  CAS  Google Scholar 

  26. Berne Bruce J, Pecora Robert (1976) Dynamic light scattering with application in physics, chemistry and biology. Wiley, New York

    Google Scholar 

  27. Meinrath G (1997) Uranium(VI) speciation by spectroscopy. J Radioanal Nucl Chem 224:119–126. doi:10.1007/BF02034623

    Article  CAS  Google Scholar 

  28. Quiles F, Nguyen-Trung C, Cartret C, Humbert B (2011) Hydrolysis of Uranyl(VI) in acidic and basic aqueous solutions using a noncomplexing organic base: a multivariate spectroscopic and statistical study. Inorg Chem 50:2811–2823. doi:10.1021/ic101953q

    Article  CAS  Google Scholar 

  29. Katharina Muller (2010) The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and aluminosilicates studied by in situ vibrational spectroscopy. PhD Dessertation, Dresden University. http://www.qucosa.de/fileadmin/data/qucosa/documents/6194/Diss_KaMue_101101.pdf. Accessed 30 Apr 2013

  30. Toth LM, Lin JS, Felker LK (1991) Small angle X-ray scattering from zirconium(IV) hydrous tetramers. J Phys Chem 95:3106–3108. doi:10.1021/j100161a028

    Article  CAS  Google Scholar 

  31. Stebbens AE, Shreir LL (1959) Refractive index of Uranium oxide produced by anodic oxidation. Nature 183:1113–1114. doi:10.1038/1831113a0

    Article  CAS  Google Scholar 

  32. Ermolaev VM, Zakharova EV, Shilov VP (2001) Depolymerization of Pu(IV) polymer in 0.5–3 M HNO3 in the presence of reductants and oxidants. Radiochemistry 43:424–428. doi:10.1023/A:1012874322870

    Article  CAS  Google Scholar 

  33. Rothe J, Walther C, Denecke MA, Fanghanel Th (2004) XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorg Chem 43:4708–4718. doi:10.1021/ic049861p

    Article  CAS  Google Scholar 

  34. Toth LM, Friedman HA (1978) The IR spectrum of Pu(IV) polymer. J Inorg Nucl Chem 40:807–810. doi:10.1016/0022-1902(78)80156-0

    Article  CAS  Google Scholar 

  35. Ockenden DW, Welch GA (1956) The preparation and properties of some plutonium comounds. V. Colloidal quadrivalent plutonium. J Chem Soc 1:3358–3363. doi:10.1039/JR9560003358

    Article  Google Scholar 

  36. Johnson GL, Toth LM (1978) Plutonium(IV) and Thorium(IV) hydrous polymer chemistry. Technical report ORNL/TM-6365. doi:10.2172/7095381

  37. Thiyagarajan P, Diamond H, Soderholm L, Horwitz, Toth LM, Felker LK (1990) Plutonium(IV) polymers in aqueous and organic media. Inorg Chem 29:1902–1907. doi:10.1021/ic00335a028

    Article  CAS  Google Scholar 

  38. Heim K, Foerstendorf (2008) FZD—IRC Annual Report, p 49. http://www.qucosa.de/fileadmin/data/qucosa/documents/2785/12600.pdf. Accessed 30 Apr 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priyadarshini, N., Sampath, M., Kumar, S. et al. A combined spectroscopic and light scattering study of hydrolysis of uranium(VI) leading to colloid formation in aqueous solutions. J Radioanal Nucl Chem 298, 1923–1931 (2013). https://doi.org/10.1007/s10967-013-2624-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2624-6

Keywords

Navigation