Skip to main content
Log in

Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Three commonly used medicinal plants, e.g., Adhatoda vasica, Cassia fistula, and Withania somnifera grown in two contrasting environmental conditions, namely from copper mining site and from control site corresponding to soil not contaminated with Cu, to understand correlations between high Cu bioaccumulation in medicinal plants on their antioxidant activities. Concentrations of some essential metals, e.g., Cr, Mn, Fe, Cu, Zn, and Se in the leaves of these plants were measured by instrumental neutron activation analysis. The Cu levels in the samples from mining site were in the range of 32.6 to 57.2 mg/kg, which were 5–7 folds higher than the control samples, while Cr levels were about 2-folds higher in the mining site. Speciation studies of Cr revealed negligible content of toxic hexavalent Cr. Antioxidant assay of these plants from both the sampling sites, measured as total phenolic content, total flavonoid content, 2,2′-diphenyl-1-picrylhydrazyl, free radical scavenging ability, and chelating ability with ferrous ions exhibited maximum activity for A. vasica, while that of W. somnifera was minimum. However, the variations in the antioxidant activities for each medicinal plant species from mining site and control site did not reveal significant differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Halliwell B (1994) Lancet 344:721–724

    Article  CAS  Google Scholar 

  2. Niki E (1997) In: Ohigashi H, Osawa T, Terao J, Watanabe S, Yoshikawa T (eds) Food factors for cancer prevention, Springer, Tokyo

  3. Cai YZ, Luo Q, Sun M, Corke H (2004) Life Sci 74:2157–2184

    Article  CAS  Google Scholar 

  4. Mitscher LA, Telikepalli H, McGhee E, Shankel DM (1996) Mutat Res 350(1):142–143

    Google Scholar 

  5. Sala A, Recio MD, Giner RM, Manez S, Tournier H, Schinella G, Rios JL (2002) J Pharm Pharmacol 54(3):365–371

    Article  CAS  Google Scholar 

  6. Li LN (1998) Pure Appl Chem 70:547–554

    Article  CAS  Google Scholar 

  7. Hwang KH (2003) Food Sci Biotech 12:238–243

    CAS  Google Scholar 

  8. Choudhury RP, Acharya R, Nair AGC, Reddy AVR, Garg AN (2008) J Radioanal Nucl Chem 276:85–93

    Article  CAS  Google Scholar 

  9. Maharia RS, Dutta RK, Acharya R, Reddy AVR (2010) J Environ Sci Heal B 45:174–181

    Article  CAS  Google Scholar 

  10. Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006) J Ethnobiol Ethnomed 2:43. doi:10.1186/1746-4269-2-43

    Article  Google Scholar 

  11. Gupta SK, Dua A, Vohra BP (2003) Drug Metabol Drug Interact 19(3):211–222

    Article  Google Scholar 

  12. Mukhopadhyay PK (2001) Proceedings of the symposium on intelligent nuclear instrumentation (INIT-2001) Bhabha Atomic Research Centre, Mumbai, 6–9 February, pp 307–310

  13. Panichev N, Mandiwana K, Kataeva M, Siebert S (2005) Spectrochim Acta B 60:699–703

    Article  Google Scholar 

  14. Singleton VL, Rossi JJA (1965) Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  15. Sakanaka S, Tachibana Y, Okada Y (2005) Food Chem 89:569–575

    Article  CAS  Google Scholar 

  16. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Chem Pharm Bull 36:2090–2097

    Article  CAS  Google Scholar 

  17. Decker EA, Welch B (1990) J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  18. O’Dell BL, Sunde RA (eds) (1997) Handbook of nutritionally essential mineral elements. Marcell Dekker Inc., New York

    Google Scholar 

  19. WHO/FAO (2007) Joint FAO/WHO food standard programme codex Alimentarius Commission 13th session

  20. Mertz W (1993) J Nutr 123(4):626–636

    CAS  Google Scholar 

  21. Shimbo S, Hayase A, Murakami M, Hatai I, Higashikawa K, Moon CS, Zhang ZW, Watanabe T, Iguchi H, Ikeda M (1996) Food Addit Contam 13:775–786

    Article  CAS  Google Scholar 

  22. Kulkarni SD, Tilak JC, Acharya R, Rajurkar NS, Devasagayam TPA, Reddy AVR (2006) Phytother Res 20:218–227

    Article  CAS  Google Scholar 

  23. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Am J Med 113:71–88

    Article  Google Scholar 

Download references

Acknowledgments

RSM was grateful to Council for Scientific and Industrial Research (CSIR), India for the award of senior research fellowship (SRF) 09/143(0579)/2007-EMR-1. RKD acknowledged the financial assistance from Board of Research in Nuclear Science (BRNS) via Grant No. 2007/37/47/BRNS/2887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharia, R.S., Dutta, R.K., Acharya, R. et al. Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas. J Radioanal Nucl Chem 294, 395–400 (2012). https://doi.org/10.1007/s10967-011-1586-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1586-9

Keywords

Navigation