Skip to main content
Log in

Modification of hydrophilic, optical and electrical properties of bisphenol-A based polycarbonate polymeric films using DC O2 plasma

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, Makrofol DE 1–1 films were treated with O2 plasma for different treatment times ranging from 60 to 120 min at applied power 3.5 W and working pressure 0.4 Torr. The induced changes in Makrofol surface properties after plasma treatment were examined with Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), Photoluminescence (PL) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy techniques. The changes in the wettability property and surface free energy (SFE) of the plasma treated Makrofol polymer samples have been investigated by measuring the water and glycerol contact angles. Moreover, the induced changes in the dielectric Parameters and AC conductivity of plasma treated Makrofol samples were studied at a wide range of frequencies at room temperature. AFM analysis revealed that the average surface roughness (Ra) of Makrofol samples was increased after plasma treatment. Also SEM images clearly indicated that more enhanced surface roughness can be obtained with increasing treatment time. A noticeable increase in the intensity of PL emission spectra with increasing plasma treatment time was observed. This increase could be attributed to the increase in surface roughness and surface area of Makrofol samples after plasma treatment. The measurements of contact angle showed an enhancement in the wettability property and surface free energy of Makrofol samples after plasma treatment time. The analysis of the results of UV–Vis spectra revealed that the absorbance, Urbach energy (EU), the refractive index (n), the extinction coefficient (k) and number of carbon per length (N) were increased while the transmission and optical energy band gap of Makrofol samples were decreased with increasing plasma treatment time. AC conductivity, dielectric constant and dielectric loss of Makrofol samples have been increased by increasing plasma treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References 

  1. El Ghazaly M, Aydarous A (2017) Photoluminescence emission spectra of Makrofol DE 1–1 upon irradiation with ultraviolet radiation. Results Phys 7:333–337

    Article  Google Scholar 

  2. LeGrand DG, Bendler JT (2000) Handbook of polycarbonate science and technology. Marcel Dekker Inc New York

    Google Scholar 

  3. Gupta SK, Singh P, Kumar R (2015) Gamma radiation induced modifications on physicochemical properties of Makrofol (KG and N) polycarbonate. Adv Polym Technol 34:21510

    Google Scholar 

  4. El Ghazaly M (2012) Modifications of the optical properties in Makrofol-E SSNTD exposed to ultraviolet radiation of different wavelengths. Radiat Eff Defects Solids 167:141–148

    Article  CAS  Google Scholar 

  5. El Ghazaly M, Alzahranic AA (2013) Correlation between photoluminescence and optical properties of Makrofol® De 1–1 exposed to high flux of UVC. Radiat Eff Defects Solids 168:137–145

    Article  CAS  Google Scholar 

  6. Radwan RM, Abdul-Kader AM, EL-Hag Ali A (2008) Ion bombardment induced changes in the optical and electrical properties of polycarbonate. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266:3588–3594

    Article  CAS  Google Scholar 

  7. Subedi DP, Zajickova L, Bursikova V, Janca J (2003) Surface modification of polycarbonate  (bisphenol A) by low pressure rf plasma. Him J Sci 1:115–118

    Google Scholar 

  8. Vijayalakshmi KA, Mekala M, Yoganand CP, Navaneetha Pandiyaraj K (2011) Studies on modification of surface properties in polycarbonate (PC) film induced by DC glow discharge plasma. Int J Poly Sci p 7

  9. Rathore BS, Gaur MS, Singh F, Singh KS (2012) Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat Eff Defects Solids Incorp Plasma Sci Plasma Technol 167:131–140

    Article  CAS  Google Scholar 

  10. Helal AG, Nouh SA, El-Khabeary H (2015) Structural changes of Makrofol polymer due to argon ion beam irradiation. J Nucl Ene Sci Power Generat Technol 4:1

    Google Scholar 

  11. Resta V, Quarta G, Lomascolo M, Maruccio L, Calcagnile L (2015) Raman and Photoluminescence spectroscopy of polycarbonate matrices irradiated with different energy 28Si+ ions. Vacuum 116:82–89

    Article  CAS  Google Scholar 

  12. El-Sayed D, El-Saftawy AA, Abd El Aal SA, Fayez-Hassan M, Al-Abyad M, Mansour NA, Seddik U (2017) Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors. Radiat Phys Chem 133:9–20

    Article  CAS  Google Scholar 

  13. Ovtsyn AA, Smirnov SA, Shikova TG, Kholodkov IV (2017) Modification of polycarbonate surface in oxidizing plasma. IOP Conf Series J Phys Conf Series 927:012038

    Article  CAS  Google Scholar 

  14. Rammah YS, Ibrahim SE, Awad EM (2019) Electrical and optical properties of Makrofol DE 1–1 polymeric films induced by gamma irradiation. Bull Natl Res Cent 43:32–43

    Article  Google Scholar 

  15. Nemani SK, Annavarapu RK, Mohammadian B, Raiyan A, Jamie Heil Md, Haque A, Abdelaal A, Sojoudi H (2018) Surface modification of polymers: methods and applications. Adv Mater Interfaces 5:1801247

    Article  CAS  Google Scholar 

  16. Liston EM, Martinu L, Wertheimer MR (2012) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7:1091–1127

    Article  Google Scholar 

  17. EL-Sayed NM, Farag OF, Nasrallah DA (2020) Improved surface properties of copper/polymethyl methacrylate nanocomposite films using DC O2 plasma. Arab J Nucl Sci Appl 53:110–118

    Google Scholar 

  18. Mandolfino C, Lertora E, Gambaro C, Pizzorni M (2019) Functionalization of neutral polypropylene by using low pressure plasma treatment: effects on surface characteristics and adhesion properties. Polymers 11:202

    Article  PubMed Central  CAS  Google Scholar 

  19. Hejda F, Solar P, Kousal J (2010) Surface free energy determination by contact angle measurements—a comparison of various approaches. WDS’10 Proc Contri Pap Part III:25–30

  20. Elsayed NM, Mansour MM, Farag FO, Elghazaly HM (2012) N2, N2-Ar and N2-He DC Plasmas for the improvement of polymethylmethacrylate surface wettability. Adv Appl Sci Res 3:1327–1334

    CAS  Google Scholar 

  21. Sultana S, Matsui J, Mitani S, Mitsuishi M, Miyashita T (2009) Silicon-containing polymer nanosheets for oxygen plasma resist application. Polymer 50:3240–3244

    Article  CAS  Google Scholar 

  22. Hassan A, Abd EL Aal SA, Shehata MM, EL-Saftawy AA (2019) Surf Rev Lett 26:1850220

    Article  CAS  Google Scholar 

  23. Atta A, Ali HE (2013) Structural and thermal properties of PTFE films by argon and oxygen plasma. Arab J Nucl Sci Appl 46:106–114

    Google Scholar 

  24. Tayel A, Zaki MF, El Basaty AB, Hegazy TM (2015) Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector. J Adv Res 6:219–224

    Article  CAS  PubMed  Google Scholar 

  25. Subedi DP, Madhup DK, Adhikari K, Joshi UM (2008) Plasma treatment at low pressure for the enhancement of wettability of polycarbonate. Indian J Pure Appl Phys 46:540–544

    CAS  Google Scholar 

  26. Czylkowski D, Hrycak B, Sikora A, Moczała-Dusanowska M, Dors M, Jasi´nski M (2019) Surface modification of polycarbonate by an atmospheric pressure argon microwave plasma sheet. Materials 12(2418):1–15

    Google Scholar 

  27. Jaleha B, Parvin P, Wanichapichart P, Pourakbar Saffar A, Reyhani A (2010) Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl Surf Sci 257:1655–1659

    Article  CAS  Google Scholar 

  28. Narushima K, Tsutsui Y, Kasukabe K, Inagaki N, Isono Y, Islam MR (2007) Surface modification of polymer films by pulsed oxygen plasma. Jpn J Appl Phys 46:4246

    Article  CAS  Google Scholar 

  29. Landgrafa R, Kaiser MK, Posseckardt J, Adolphi B, Fischer W-J (2009) Functionalization of polymer sensor surfaces by oxygen plasma treatment. Procedia Chem 1:1015–1018

    Article  CAS  Google Scholar 

  30. Tomislava V, Alenka V, Matej H, Mario Š, Anet RJ, Miran M (2018) Modification of physico-chemical properties of acryl-coated polypropylene foils for food packaging by reactive particles from oxygen plasma. Materials 11(372):1–17

    Google Scholar 

  31. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen H-A, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509

    Article  CAS  PubMed  Google Scholar 

  32. Donya H, Salah A (2020) Effect of 60 keV argon ion implantation in Makrofol® DE 1–1 on the optical properties. Polym Bull 77:6349–6375

    Article  CAS  Google Scholar 

  33. Fang X, Wei Z, Fang D, Chu X, Tang J, Wang D, Wang X, Li J, Li Y, Yao B, Wang X, Chen R (2018) Surface state passivation and optical properties investigation of gasb via nitrogen plasma treatment. ACS Omega 3:4412–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larena A, Millán F, Pinto GPG (2002) Effect of surface roughness on the optical properties of multilayer polymer films. Appl Surf Sci 187(s3–4):339–346

    Article  CAS  Google Scholar 

  35. Akin N, Yunus Ozen H, Efkere I, Cakmak M, Ozcelik S (2015) Surface structure and photoluminescence properties of AZO thin films on polymer substrates. Surf Interface Anal 47(1):2015

    Article  CAS  Google Scholar 

  36. Halászová S, Váry T, Nádaždy V, Chlpík J, Cirák J (2018) Effect of substrate roughness on photoluminescence of poly (3-hexylthiophene). Conf Pap AIP Conf Proc 1996(1):020015

  37. Huayong Xu, Xiaobo Hu, Xiangang Xu, Shen Y, Shuang Qu, Wang C, Li S (2012) Gallium vacancies related yellow luminescence in N-face GaN epitaxial film. Appl Surf Sci 258:6451–6454

    Article  CAS  Google Scholar 

  38. Abdul-Kader AM (2013) The optical band gap and surface free energy of polyethylene modified by electron beam irradiations. J Nucl Mater 435:231–236

    Article  CAS  Google Scholar 

  39. Moura EAB, Ortiz AV, Wiebeck H, Paula ABA, Silva ALA, Silva LGA (2004) Effects of gamma radiation on commercial food packaging films-study of changes in UV/VIS spectra. Radiat Phys Chem 71:201–205

    Article  CAS  Google Scholar 

  40. Sharma D, Sharma P, Thakur N (2009) Analysis of the optical constants of spun cast polystyrene thin film Optoelectron. Adv Mater Rapid Commun 3:145–153

    CAS  Google Scholar 

  41. Thirumavalavan S, Mani K, Sagadevan S (2015) Investigation of the structural, optical and electrical properties of copper selenide thin films. Mater Res 18:1000–1007

    Article  CAS  Google Scholar 

  42. Atta A, Abdel-Galil A (2016) Improved surface properties of PTFE polymer films using broad ion source. Indian J Pure Appl Phys 54:551–556

    Google Scholar 

  43. Mahendia S, Tomar AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508:406–411

    Article  CAS  Google Scholar 

  44. Rashidian M, Dorranian D (2014) Low-intensity UV effects on optical properties of PMMA film. J Theory Appl Phys 8(121):1–7

    Google Scholar 

  45. El-Sayed NM, Farag OF (2019) Optical and electrical properties of plasma surface treated polymethylmethacrylate films. Arab J Nucl Sci Appl 52:83–92

    Google Scholar 

  46. Farag OF, El-Sayed NM, Eaied NA (2018) Effects of low temperature plasma treatment on surface properties of PS-Cu nanocomposites films. Arab J Nucl Sci Appl 51:194–203

    Google Scholar 

  47. Fink D, Hnatowicz V (2007) Fundamentals of ion irradiated polymers. Springer, Berlin, Germany

    Google Scholar 

  48. Herve P, Vandamme LKJ (1994) Infrared Phys Technol 35(4):609–615

    Article  CAS  Google Scholar 

  49. Tomlinson WJ, Kaminow IP, Chandross EA, Fork RL, Silfvast WT (1970) Photo induced refractive index increase in (polymethylmethacrylate) and its applications. Appl Phys Lett 16:486–489

    Article  CAS  Google Scholar 

  50. Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2016) Electron beam and gamma ray irradiated polymer electrolyte films: dielectric properties. J Radiat Res Appl Sci 9:117–124

    Article  CAS  Google Scholar 

  51. Saad EN, Eissa MF, Badawi EA, El-Fayoumi MAK (2014) Investigation of the physical properties of polymeric materials induced by alpha radiation. Int J Adv Res 2:694–702

    Google Scholar 

  52. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  53. El-Sayed SM, Abdel-Hamid HM, Radwan RM (2004) Effect of electron beam irradiation on the conduction phenomena of unplasticized PVC/PVA copolymer. Radiat Phys Chem 69:339

    Article  CAS  Google Scholar 

  54. Abdul-Kader AM, Zaki MF, El-Badry BA (2014) Modified the optical and electrical properties of CR-39 by gamma ray irradiation. J Radiat Res Appl Sci 7:286–291

    Article  Google Scholar 

  55. Kumar R, Singh P, Ali SA, Sharma A, Khan SA, Sonkawade RG, Prasad R (2010) Swift heavy ion induced modification in makrofol-KG polycarbonate. Indian J Pure Appl Phys 48:166–171

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. M. El Ghazaly, Faculty of Science, Zagazig University, Egypt, for providing us with the Makrofol DE 1-1 films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa A. Nasrallah.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrallah, D.A., EL-Sayed, N.M. & Farag, O.F. Modification of hydrophilic, optical and electrical properties of bisphenol-A based polycarbonate polymeric films using DC O2 plasma. J Polym Res 28, 380 (2021). https://doi.org/10.1007/s10965-021-02743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02743-3

Keywords

Navigation