Skip to main content

Advertisement

Log in

Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSC) are became more popular as a new type of solar cell because of their environmental friendliness and low cost. Their large-scale application still requires overcoming the problems of volatilization and loss of liquid electrolytes, which leads to a reduction in the lifetime of the cell. In this paper, Polylactic acid (PLA) with a different Polydispersity index (PDI) is first synthesized via the Aluminium ring-opening method and then stirred with liquid electrolyte for 24 h to form polymer gel electrolyte (PGE). The PGE is then characterized using various analytical tools. Results show a strong interaction between hydroxyl and carboxylate groups of PEG and PLA to form a chelating structure (egg-box model).The polymer gel electrolyte exhibit high ionic conductivity (7.60 × 10–4 S cm−1). The fabricated dye-sensitized solar cells configuration (Glass/FTO/TiO2/MK-2 dye/PGE/Pt/FTO/glass) shows a photocurrent conversion efficiency (PCE) of 5.64% under a solar light illumination of 85 mW cm-2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grätzel M (2009) Recent advances in Sensitized Mesoscopic Solar Cells. Acc Chem Res 42:1788–1798. https://doi.org/10.1021/ar900141y

    Article  CAS  PubMed  Google Scholar 

  2. Sharma GD, Daphnomili D, Angaridis PA, Biswas S, Coutsolelos AG (2013) Effect of Thiourea incorporation in the electrolyte on the photovoltaic performance of the DSSC sensitized with pyridyl functionalized porphyrin. Electrochim Acta 102:459–465. https://doi.org/10.1016/j.electacta.2013.04.003

    Article  CAS  Google Scholar 

  3. Yu Z, Vlachopoulos N, Hagfeldt A, Kloo L (2013) In completely solvated ionic liquid mixtures as electrolyte solvents for highly stable dye-sensitized solar cells. RSC Adv 3:1896–1901. https://doi.org/10.1039/C2RA22330A

    Article  CAS  Google Scholar 

  4. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for high-performance Dye-Sensitized Solar Cells. J Am Chem Soc 130:10720–10728. https://doi.org/10.1021/ja801942j

    Article  CAS  PubMed  Google Scholar 

  5. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2 Bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390. https://doi.org/10.1021/ja00067a063

    Article  CAS  Google Scholar 

  6. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: A brief overview. Sol Energy 85:1172–1178. https://doi.org/10.1016/j.solener.2011.01.018

    Article  CAS  Google Scholar 

  7. Su’ait MS, Rahman MYA, Ahmad A (2015) Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol Energy 115:452–470. https://doi.org/10.1016/j.solener.2015.02.043

    Article  CAS  Google Scholar 

  8. Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63:267–273. https://doi.org/10.1016/S0927-0248(00)00033-7

    Article  CAS  Google Scholar 

  9. Yu Z, Vlachopoulos N, Gorlov M, Kloo L (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40:10289–10303. https://doi.org/10.1039/C1DT11023C

    Article  CAS  PubMed  Google Scholar 

  10. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 20:2655–2666. https://doi.org/10.1039/B716419J

    Article  Google Scholar 

  11. Baughman RH (1974) solid-state synthesis of large polymer single crystal. J Polym Sci Polym Phys Edit 12:1511–1535. https://doi.org/10.1002/pol.1974.180120801

    Article  CAS  Google Scholar 

  12. Kiji J, Kaiser J, Wegner G, Schulz RC (1973) Solid-state polymerization of derivatives of 2, 4, 6-octatriyne: 9. Topochemical reactions of monomers with conjugated triple bonds. Polymer 14:433–439. https://doi.org/10.1016/0032-3861(73)90009-8

    Article  CAS  Google Scholar 

  13. Baughman RH (1972) Solid-state polymerization of diacetylenes. J Appl Phys 43:4362–4370. https://doi.org/10.1063/1.1660929

    Article  CAS  Google Scholar 

  14. Burschka J, Pellet N, Moon S–J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319. https://doi.org/10.1038/nature12340

    Article  CAS  PubMed  Google Scholar 

  15. Pitchaiya S, Natarajan M, Santhanam A, Asokan V, Yuvapragasam A, Madurai Ramakrishna V, Palanisamy SE, Senthilarasu S, Velauthapillai D (2018) A review of the classification of organic/inorganic/carbonaceous hole-transporting materials for perovskite solar cell application. Arab J Chem 13:2526–2557. https://doi.org/10.1016/j.arabjc.2018.06.006

    Article  CAS  Google Scholar 

  16. Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489. https://doi.org/10.1038/nature11067

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Wang X, Zhang G, Ma A, Chen W, Shao L, Shen C, Xie K (2019) High -performance solid composite polymer electrolyte for all solid-state lithium battery through facile microstructure regulation. Front Chem 7:388. https://doi.org/10.3389/fchem.2019.00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Xie J, Shi F, Lin D, Liu Y, Liu W, Pei A, Gong Y, Wang H, Liu K, Xiang Y, Cui Y (2018) Vertically aligned and continuous nano scale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett 6:3829–3838. https://doi.org/10.1021/acs.nanolett.8b01111

    Article  CAS  Google Scholar 

  19. Zhang J, Vlachopoulos N, Jouini M, Johansson MB, Zhang X, Nazeeruddin MK, Boschloo G, Hagfeldt A (2016) Efficient solid-state dye-sensitized solar cells: The influence of dye molecular structures for the in-situ photo electrochemically polymerized PEDOT as hole-transporting material. Nano Energy 19:455–470. https://doi.org/10.1016/j.nanoen.2015.09.010

    Article  CAS  Google Scholar 

  20. Wang C, Xie H, Zhang L, Gong Y, Pastel G, Dai J, Liu B, Wachsman ED, Hu L (2017) Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater 8:1701963. https://doi.org/10.1002/aenm.201701963

    Article  CAS  Google Scholar 

  21. He X, Cheng H, Yue S, Ouyang J (2020) Quasi-solid state nanoparticle / (ionic liquid) gels with significantly high ionic thermoelectric properties. J Mater Chem A 8:10813–10821. https://doi.org/10.1039/D0TA04100A

    Article  CAS  Google Scholar 

  22. Bandara TMWJ, Dissanayake MAKL, Jayasundara WJMJSR, Albinssone I, Mellandera B-E (2012) Efficiency enhancement in dye-sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. Phys Chem Chem Phys 14:8620–8627. https://doi.org/10.1039/c2cp24139k

    Article  CAS  PubMed  Google Scholar 

  23. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundara WJMJSR, Melland B-E (2013) Efficiency enhancement in dye-sensitized solar cells based on PAN gel electrolyte with Pr4NI + MgI2 binary iodide salt mixture. J Appl Electrochem 43:891–901. https://doi.org/10.1007/s10800-013-0582-x

    Article  CAS  Google Scholar 

  24. Arof AK, Noor IM, Buraidah MH, Bandara TMWJ, Careem MA, Albinsson I, Mellander B-E (2017) Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochim Acta 251:223–234. https://doi.org/10.1016/j.electacta.2017.08.129

    Article  CAS  Google Scholar 

  25. Pavithra N, Anandan S (2016) Silicotungustic acid incorporated gel polymer electrolyte as efficient redox mediator for dye sensitized solar cells. Synth Met 219:93–100. https://doi.org/10.1016/j.synthmet.2016.05.014

    Article  CAS  Google Scholar 

  26. Yusuf SNF, Aziz MF, Hassan HC, Bandara TMWJ, Mellander B-E Careem MA, Arof AK (2014) Phthaloyl chitosan-based gel polymer electrolytes for efficient dye-sensitized solar cells. J Chem 783023. https://doi.org/10.1155/2014/783023

  27. Chen CL, Teng H, Lee YL (2011) Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). J Mat Chem 21:628–632. https://doi.org/10.1039/C0JM03597A

    Article  CAS  Google Scholar 

  28. Shah DK, Son YH, Lee HR, Shaheer Akhtar M, Kim CY, Yang OB (2020) A stable gel electrolyte based on poly butyl acrylate (PBA)-co-polyacrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chem Phys Lett 754:137756. https://doi.org/10.1016/j.cplett.2020.137756

    Article  CAS  Google Scholar 

  29. Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun Fm Li Y (2020) Synthesis and biological applications of Polylactic acid. Molecules 25(5023):1–18. https://doi.org/10.3390/molecules25215023

  30. Cho KY, Kim C-H, Lee JW, Park JK (1999) Synthesis and characterization of poly (ethylene glycol) grafted poly (L-lactide). Macromol Rapid Commun 20:598–601. https://doi.org/10.1002/(SICI)1521-3927(19991101)20:11%3c598:AID-MARC598%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  31. Le Moigne N, Longerey M, Taulemesse JM, Bénézet J-C, Bergeret A (2014) Study of the interface in natural fibres reinforced poly (lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494. https://doi.org/10.1016/j.indcrop.2013.11.022

    Article  CAS  Google Scholar 

  32. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2014) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231. https://doi.org/10.1016/s0168-3659(03)00372-9

    Article  Google Scholar 

  33. Miguel S, Ribeiro M, Coutinho P, Correia I (2017) Electrospun Polycaprolactone/Aloe Vera Chitosan Nano fibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers 9:183. https://doi.org/10.3390/polym9050183

    Article  CAS  PubMed Central  Google Scholar 

  34. Peng S, Zhu P, Wu Y, Mhaisalkar SG, Ramakrishna S (2012) Electrospun conductive polyaniline–polylactic acid composite nanofiber as counter electrodes for rigid and flexible dye-sensitized solar cells. RSC Adv 2:652–657. https://doi.org/10.1039/c1ra00618e

    Article  CAS  Google Scholar 

  35. Lu W-Y, Chang Y-C, Lian C-J, Wu K-H, Chiang MY, Chen H-Y, Lin C-C, Ko B-T (2019) Optimization of six-membered ring aluminum complexes in ɛ-caprolactone polymerization. Eur Polym J 114:151–163. https://doi.org/10.1016/j.eurpolymj.2019.02.012

    Article  CAS  Google Scholar 

  36. Jennifer LR, Katherine BA (2008) Ring-opening polymerization of Lactide to form a biodegradable polymer. J Chem Edu 85:258–264. https://doi.org/10.1021/ed085p258

    Article  Google Scholar 

  37. Basu T, Pal B, Singh S (2018) Fabrication of core–shell PLGA/PLA–pNIPAM nanocomposites for improved entrapment and release kinetics of antihypertensive drugs. Particuology 40:169–176. https://doi.org/10.1016/j.partic.2017.10.002

    Article  CAS  Google Scholar 

  38. Maiza M, Benaniba MT, Quintard G, Massardier –Nageotte V, (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590. https://doi.org/10.1590/0104-1428.1986

    Article  CAS  Google Scholar 

  39. Costanzo CD, Ribba L, Goyanes S, Ledesma S (2014) Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. J Phys D Appl Phys 47:135103(8pp). https://doi.org/10.1088/0022-3727/47/13/135103

  40. Yang Y, Zhou C, Xu S, Hu H, Chen B, Zhang J, Su-j Wu, Liu W, Zhao X (2008) Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)–poly (vinylidene fluoride) polymer-blend electrolytes. J Power Sources 185:1492–1498. https://doi.org/10.1016/j.jpowsour.2008.09.034

    Article  CAS  Google Scholar 

  41. Liang Y, Yamada T, Zhou H, Kimizuka N (2019) Hexakis (2, 3, 6-tri- O -methyl) - α-cyclodextrin-I5 - Complex in Aqueous I -/I 3- Thermo cells and Enhancement in the Seebeck Coefficient. Chem Sci 10:773–780. https://doi.org/10.1039/c8sc03821j

    Article  CAS  PubMed  Google Scholar 

  42. Duan Y, Tang Q, Chen Y, Zhao Z, Lv Y, Hou M, Yang P, He B, Yu L (2015) Solid-state dye-sensitized solar cells from poly (ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. J Mater Chem A 3:5368–5374. https://doi.org/10.1039/c4ta06393g

    Article  CAS  Google Scholar 

  43. Gangopadhyay M, Singh T, Behara KK, Karwa S, Ghosh SK, Singh NDP (2015) Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem Photobiol Sci 14:1329–1336. https://doi.org/10.1039/C5PP00057B

  44. Salac J, Sera J, Jurca M, Verney V, Adam AM, Koutny M (2019) Photo degradation and biodegradation of poly (Lactic) acid containing orotic acid as a nucleation agen. Materials 12:481. https://doi.org/10.3390/ma12030481

    Article  CAS  PubMed Central  Google Scholar 

  45. Cardenas-Trivino G, Linares-Bermúdez N, Nunez-Decap M (2019) Synthesis and properties of bionanocomposites of polyhydroxybutyrate-polylactic acid doped with copper and silver nanoparticles. Int J Polym Sci 1–8. https://doi.org/10.1155/2019/4520927

  46. Awale R, Ali F, Azmi A, Puad N, Anuar H, Hassan A (2018) Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers 10:977. https://doi.org/10.3390/polym10090977

    Article  CAS  PubMed Central  Google Scholar 

  47. Chieng B, Ibrahim N, Yunus W, Hussein M (2014) Poly (lactic acid)/Poly (ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 6:93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  48. McNeill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates-1. Polylactide: General features of the degradation under Programmed Heating Conditions. Polym Degrad Stab 11:267–285. https://doi.org/10.1016/0141-3910(85)90050-3

    Article  CAS  Google Scholar 

  49. Meaurio E, Lopez-Rodriguez N, Sarasua JR (2006) Infrared Spectrum of Poly (L-lactide): Application to Crystallinity Studies. Macromolecules 39:9291–9301. https://doi.org/10.1021/ma061890r

    Article  CAS  Google Scholar 

  50. Kemala T, Budianto E, Soegiyono B (2012) Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ɛ-caprolactone) with poly (vinyl alcohol) as emulsifier. Arab J Chem 5:103–108. https://doi.org/10.1016/j.arabjc.2010.08.003

    Article  CAS  Google Scholar 

  51. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Polymer electrolyte based dye-sensitized solar cell with rice starch and 1-methyl-3-propylimidazolium iodide ionic liquid. Mater Des 85:833–837. https://doi.org/10.1016/j.matdes.2015.06.113

    Article  CAS  Google Scholar 

  52. Gong J, Sumathy K, Liang J (2012) Polymer electrolyte based on polyethylene glycol for quasi-solid state dye-sensitized solar cells. Renew Energy 39:419–423. https://doi.org/10.1016/j.renene.2011.07.015

    Article  CAS  Google Scholar 

  53. Lv S, Zhang Y, Gu J, Tan H (2018) physicochemical evolutions of starch/poly (lactic acid) composite biodegraded in real soil. J Environ Manage 228:223–231. https://doi.org/10.1016/j.jenvman.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  54. Luo Y, Lin Z, Guo G (2019) Biodegradation assessment of poly (lactic) filled with functionalized Titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res Lett 14:56. https://doi.org/10.1186/s11671-019-2891-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo Y-B, Wang X-L, Wang Y-Z (2012) Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stabil 97:721–728. https://doi.org/10.1016/j.polymdegradstab.2012.02.011

    Article  CAS  Google Scholar 

  56. Yang S, Wu Z-H, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test 27:957–963. https://doi.org/10.1016/j.polymertesting.2008.08.009

    Article  CAS  Google Scholar 

  57. Buraidah MH, Teo LP, Majid RS, Yahya R, Taha RM, Arof AK (2010) Characterizations of chitosan-based polymer electrolyte photovoltaic cells. Int J Photo Energy 1–7. https://doi.org/10.1155/2010/805836

  58. Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM (2019) Development of polymer blend electrolyte membranes based on chitosan: Dextran with high ion transport properties for EDLC application. Int J Mol Sci 20:3369. https://doi.org/10.3390/ijms20133369

    Article  CAS  PubMed Central  Google Scholar 

  59. Wang X, Zhu H, Girard GMA, Yunis R, MacFarlane DR, Mecerreyes D, Forsyth M, Bhattacharyya MAJ, Hewlett PC (2017) Preparation and characterization of gel polymer electrolytes using poly (ionic liquids) and high lithium salt concentration ionic liquids. J Mater Chem A 5:23844–23852. https://doi.org/10.1039/c7ta08233a

    Article  CAS  Google Scholar 

  60. Mongal BN, Bhattacharya S, Sengupta S, Mandal TK, Datta J, Naskar S (2016) A novel ruthenium sensitizer with –OMe substituted phenyl-terpyridine ligand for dye sensitized solar cells. Sol Energy 134:107–118. https://doi.org/10.1016/j.solener.2016.04.035

    Article  CAS  Google Scholar 

  61. Ramkumar S, Manoharan S, Anandan S (2012) Synthesis of D-(π-A) 2 organic chromophores for dye-sensitized solar cells. Dyes Pigm 94:503–511. https://doi.org/10.1016/j.dyepig.2012.02.016

    Article  CAS  Google Scholar 

  62. Kumar R, Sahajwalla V, Bhargava P (2019) Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using carbon material produced by organic ligand 2-Methyl- 8-hydroxyquinolinol (Mq). Nanoscale Adv 1:3192–3199. https://doi.org/10.1039/c9na00206e

    Article  CAS  Google Scholar 

  63. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466. https://doi.org/10.1016/S0013-4686(01)00540-0

    Article  CAS  Google Scholar 

  64. Wang Q, Moser J-E, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953. https://doi.org/10.1021/jp052768h

    Article  CAS  PubMed  Google Scholar 

  65. Tan CY, Saidi NM, Farhana NK, Omar FS, Algaradah MM, Bashir S, Ramesh S, Ramesh K (2020) Improved ionic conductivity, and efficiency of dye-sensitized solar cells with the incorporation of 1-methyl-3-propylimidazolium iodide. Ionics 26:3173–3183. https://doi.org/10.1007/s11581-020-03447-2

    Article  CAS  Google Scholar 

  66. Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Poly Res 24(74):1–22. https://doi.org/10.1007/s10965-017-1227-2

Download references

Acknowledgements

The research work was financially supported by Solar Energy Research Initiative-DST, New Delhi (DST/TM/SERI/CHY/18-19) and the Ministry of Science and Technology of Taiwan (Grant MOST 107-2113-M-037-001). H.-Y. Chen wants to thank the Centre for Research Resources and Development at Kaohsiung Medical University for instrumentation and equipment support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsuan-Ying Chen or Sambandam Anandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekaran, A., Chen, HY., Ponnusamy, V.K. et al. Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells. J Polym Res 28, 252 (2021). https://doi.org/10.1007/s10965-021-02615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02615-w

Keywords

Navigation