Skip to main content

Advertisement

Log in

Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, pluronics (P123, F127, F87 and F68) and their gelatin modified pluronic (GP) forms (GP-P123, GP-F127, GP-F87 or GP-F68) were used to investigate the effect of gelatin conjugation as well as the lipophilic properties of each pluronic on quercetin (QU) delivery. The anti-cancer property of QU was also evaluated using breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. The QU are encapsulated in the GP nanogels via self-assembly process. Their structures were characterized by 1H-NMR and TGA. All GP nanogels performed significant higher loading efficiency compared to bare pluronic form. The size distribution of the QU-loaded GP nanogels ranged from 79.52 ± 3.22 nm to 152.51 ± 4.97 nm. The study interestingly shows that of the grafted pluronic induced the QU loading efficiency due to its higher hydrophobicity. Indeed, pluronic P123-grafted gelatin exhibited the highest QU entrapment efficiency of up to 93.02 ± 3.7%. Our obtained results indicated that the QU-loaded GP nanogels performed a sustained release ability of QU compared to pluronic-based micelles. The QU-loaded GP-P123 system performed higher activity against growth of HeLa and MCF7 cancer cell lines compared to the free QU. The preliminary results could offer a further study via co-encapsulation of the QU and anti-cancer drugs for enhancing effectiveness in chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, Opatrilova R, Kruzliak P, Stefanicka P, Büsselberg D (2018) Chemotherapeutic agents for the treatment of metastatic breast cancer: an update. Biomed Pharmacother 101:458–477. https://doi.org/10.1016/j.biopha.2018.02.108

    Article  CAS  PubMed  Google Scholar 

  2. Kubatka P, Uramova S, Kello M, Kajo K, Kruzliak P, Mojzis J, Vybohova D, Adamkov M, Jasek K, Lasabova Z (2017) Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J Cell Mol Med 21(11):2837–2851. https://doi.org/10.1111/jcmm.13197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nam J-S, Sharma A, Nguyen L, Chakraborty C, Sharma G, Lee S-S (2016) Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 21(1):108. https://doi.org/10.3390/molecules21010108

    Article  PubMed Central  Google Scholar 

  4. Brodowska KM (2017) Natural flavonoids: classification, potential role, and application of flavonoid analogues. European Journal of Biological Research 7(2):108–123. https://doi.org/10.5281/zenodo.545778

    Article  CAS  Google Scholar 

  5. Lichota A, Gwozdzinski K (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci 19(11):3533. https://doi.org/10.3390/ijms19113533

    Article  CAS  PubMed Central  Google Scholar 

  6. Rejhova A, Opattova A, Čumová A, Slív D, Vodicka P (2018) Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 144:582–594. https://doi.org/10.1016/j.ejmech.2017.12.039

    Article  CAS  PubMed  Google Scholar 

  7. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120(3):451–458. https://doi.org/10.1002/ijc.22419

    Article  CAS  PubMed  Google Scholar 

  8. Sak K (2014) Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 66(2):177–193. https://doi.org/10.1080/01635581.2014.864418

    Article  CAS  PubMed  Google Scholar 

  9. Shafabakhsh R, Asemi Z (2019) Quercetin: a natural compound for ovarian cancer treatment. Journal of Ovarian Research 12(1):55. https://doi.org/10.1186/s13048-019-0530-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han Y, Yu H, Wang J, Ren Y, Su X, Shi Y (2015) Quercetin alleviates myocyte toxic and sensitizes anti-leukemic effect of adriamycin. Hematology 20(5):276–283. https://doi.org/10.1179/1607845414Y.0000000198

    Article  CAS  PubMed  Google Scholar 

  11. Alam RT, Zeid EHA, Imam TS (2017) Protective role of quercetin against hematotoxic and immunotoxic effects of furan in rats. Environ Sci Pollut Res 24(4):3780–3789. https://doi.org/10.1007/s11356-016-8108-9

    Article  CAS  Google Scholar 

  12. Harwood M, Danielewska-Nikiel B, Borzelleca J, Flamm G, Williams G, Lines T (2007) A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 45(11):2179–2205. https://doi.org/10.1016/j.fct.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  13. Khor CM, Ng WK, Chan KP, Dong Y (2017) Preparation and characterization of quercetin/dietary fiber nanoformulations. Carbohydr Polym 161:109–117. https://doi.org/10.1016/j.carbpol.2016.12.059

    Article  CAS  PubMed  Google Scholar 

  14. Penalva R, González-Navarro CJ, Gamazo C, Esparza I, Irache JM (2017) Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia, Nanomedicine: nanotechnology. Biology and Medicine 13(1):103–110. https://doi.org/10.1016/j.nano.2016.08.033

    Article  CAS  Google Scholar 

  15. Jain S, Jain AK, Pohekar M, Thanki K (2013) Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: implications for drug-induced cardiotoxicity and nephrotoxicity. Free Radic Biol Med 65:117–130. https://doi.org/10.1016/j.freeradbiomed.2013.05.041

    Article  CAS  PubMed  Google Scholar 

  16. Caddeo C., Díez-Sales O., Pons R., Carbone C., Ennas G., Puglisi G., Fadda A. M. and Manconi M. (2016), Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin, J Colloid Interface Sci, 461, 69-78. https://doi.org/10.1016/j.jcis.2015.09.013

  17. Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C (2014) Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 9(1):684. https://doi.org/10.1186/1556-276X-9-684

    Article  CAS  PubMed Central  Google Scholar 

  18. Chen L-C, Chen Y-C, Su C-Y, Hong C-S, Ho H-O, Sheu M-T (2016) Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int J Nanomedicine 11:1557. https://doi.org/10.2147/IJN.S103681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang G, Wang J-J, Chen X-L, Du L, Li F (2016) Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release 235:276–290. https://doi.org/10.1016/j.jconrel.2016.05.045

    Article  CAS  PubMed  Google Scholar 

  20. Jain AK, Thanki K, Jain S (2014) Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization, Pharmaceutical research 31(4):923–945. https://doi.org/10.1007/s11095-013-1213-2

    Article  CAS  PubMed  Google Scholar 

  21. Luo C-L, Liu Y-Q, Wang P, Song C-H, Wang K-J, Dai L-P, Zhang J-Y, Ye H (2016) The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother 82:595–605. https://doi.org/10.1016/j.biopha.2016.05.029

    Article  CAS  PubMed  Google Scholar 

  22. Sharma RK, Shaikh S, Ray D, Aswal VK (2018) Binary mixed micellar systems of PEO-PPO-PEO block copolymers for lamotrigine solubilization: a comparative study with hydrophobic and hydrophilic copolymer. J Polym Res 25(3):73. https://doi.org/10.1007/s10965-018-1473-y

    Article  CAS  Google Scholar 

  23. Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317. https://doi.org/10.1016/j.ejpb.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  24. Dehvari K, Lin K-S, Hammouda B (2017) Small-angle neutron scattering studies of microenvironmental and structural changes of pluronic micelles upon encapsulation of paclitaxel. J Taiwan Inst Chem Eng 71:405–413. https://doi.org/10.1016/j.jtice.2016.11.027

    Article  CAS  Google Scholar 

  25. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54:759–779. https://doi.org/10.1016/S0169-409X(02)00047-9

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen DT, Dinh VT, Dang LH, Nguyen DN, Giang BL, Nguyen CT, Nguyen TBT, Thu LV, Tran NQ (2019) Dual interactions of amphiphilic gelatin copolymer and nanocurcumin improving the delivery efficiency of the nanogels. Polymers 11(5):814. https://doi.org/10.3390/polym11050814

    Article  CAS  PubMed Central  Google Scholar 

  27. Tong NAN, Nguyen TP, Nguyen CK, Tran NQ (2016) Aquated cisplatin and heparin-pluronic nanocomplexes exhibiting sustainable release of active platinum compound and NCI-H460 lung cancer cell antiproliferation, journal of biomaterials science. Polymer edition 27(8):709–720

    CAS  PubMed  Google Scholar 

  28. Nasir N, Ahmad M, Minhas MU, Barkat K, Khalid MF (2019) pH-responsive smart gels of block copolymer [pluronic F127-co-poly (acrylic acid)] for controlled delivery of Ivabradine hydrochloride: its toxicological evaluation. J Polym Res 26(9):212. https://doi.org/10.1007/s10965-019-1872-8

    Article  CAS  Google Scholar 

  29. Hamzah YB, Hashim S, Rahman WA (2017) Synthesis of polymeric nano/microgels: a review. J Polym Res 24(9):134. https://doi.org/10.1007/s10965-017-1281-9

    Article  CAS  Google Scholar 

  30. Tong NAN, Tran NQ, Nguyen XTDT, Cao VD, Nguyen TP, Nguyen CK (2018) Thermosensitive heparin-Pluronic® copolymer as effective dual anticancer drugs delivery system for combination cancer therapy. Int J Nanotechnol 15(1–3):174–187

    Article  CAS  Google Scholar 

  31. Dang LH, Nguyen TH, Tran HLB, Doan VN, Tran NQ (2018) Injectable nanocurcumin-formulated chitosan-g-pluronic hydrogel exhibiting a great potential for burn treatment. Journal of Healthcare Engineering 2018:1–14. https://doi.org/10.1155/2018/5754890

    Article  Google Scholar 

  32. Kim JY, Choi WI, Kim YH, Tae G, Lee SY, Kim K, Kwon IC (2010) In-vivo tumor targeting of pluronic-based nano-carriers. J Control Release 147(1):109–117. https://doi.org/10.1016/j.jconrel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  33. Le PN, Huynh CK, Tran NQ (2018) Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater Sci Eng C 92:1016–1030

    Article  CAS  Google Scholar 

  34. Van TD, Tran NQ, Nguyen DH, Nguyen CK, Nguyen PT (2016) Injectable hydrogel composite based gelatin-PEG and biphasic calcium phosphate nanoparticles for bone regeneration. J Electron Mater 45(5):2415–2422

    Article  Google Scholar 

  35. Nguyen TD, Nguyen TTT, Ivanov IA, Nguyen KC, Tran NQ, Hoang AN, Utkin YN (2019) Nanoencapsulation enhances anticoagulant activity of adenosine and dipeptide IleTrp. Nanomaterials 9(9):1191. https://doi.org/10.3390/nano9091191

    Article  CAS  PubMed Central  Google Scholar 

  36. Pawar A, Singh S, Rajalakshmi S, Shaikh K, Bothiraja C (2018) Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artificial Cells, Nanomedicine, and Biotechnology 46(sup1):347–361. https://doi.org/10.1080/21691401.2018.1423991

    Article  CAS  PubMed  Google Scholar 

  37. Fares AR, ElMeshad AN, Kassem MA (2018) Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug delivery 25(1):132–142. https://doi.org/10.1080/10717544.2017.1419512

    Article  CAS  PubMed  Google Scholar 

  38. Tran NQ, Nguyen CK, Nguyen TP (2013) Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv Nat Sci Nanosci Nanotechnol 4(4):045013. https://doi.org/10.1088/2043-6262/4/4/045013

    Article  CAS  Google Scholar 

  39. Pham L, Dang LH, Truong MD, Nguyen TH, Le L, Le VT, Nam ND, Bach LG, Toan NV, Tran NQ (2019) A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on chitosan-P123 in wound healing application. Biomed Pharmacother 117:109183. https://doi.org/10.1016/j.biopha.2019.109183

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen M. N. and Ho-Huynh T. D. (2016), Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects, BMC Complement Altern Med, 16(pp.220. https://doi.org/10.1186/s12906-016-1212-z

  41. Davidenko N, Schuster CF, Bax DV, Farndale RW, Hamaia S, Best SM, Cameron RE (2016) Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med 27(10):148. https://doi.org/10.1007/s10856-016-5763-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dang LH, Huynh NT, Pham NO, Nguyen CT, Vu MT, Dinh VT, Le VT, Tran NQ (2019) Injectable nanocurcumin-dispersed gelatin–pluronic nanocomposite hydrogel platform for burn wound treatment. Bull Mater Sci 42(2):1–10. https://doi.org/10.1007/s12034-019-1745-0

    Article  CAS  Google Scholar 

  43. Rahman MA, Khan MA, Tareq SM (2010) Preparation and characterization of polyethylene oxide (PEO)/gelatin blend for biomedical application: effect of gamma radiation. J Appl Polym Sci 117(4):2075–2082. https://doi.org/10.1002/app.32034

    Article  CAS  Google Scholar 

  44. Mirhosseini MM, Haddadi-Asl V, Zargarian SS (2016) Fabrication and characterization of polymer–ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles. RSC Adv 6(84):80564–80575. https://doi.org/10.1039/C6RA19499K

    Article  CAS  Google Scholar 

  45. Hussein YHA, Youssry M (2018) Polymeric micelles of biodegradable diblock copolymers: enhanced encapsulation of hydrophobic drugs. Materials 11:688. https://doi.org/10.3390/ma11050688

    Article  CAS  PubMed Central  Google Scholar 

  46. Wiradharma N, Zhang Y, Venkataraman S, Hedrick JL, Yang YY (2009) Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 4(4):302–317. https://doi.org/10.1016/j.nantod.2009.06.001

    Article  CAS  Google Scholar 

  47. Silva Pessoa LZ, Duarte JL, Anjos Ferreira RM, Faria Motta Oliveira AE, Cruz RAS, Faustino SMM, Carvalho JCT, Fernandes CP, Souto RNP, Araújo RS (2018) Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae. Rev Bras 28(5):618–625. https://doi.org/10.1016/j.bjp.2018.07.003

    Article  CAS  Google Scholar 

  48. Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A (2019) Effects of Quercetin-loaded nanoparticles on MCF-7 human breast Cancer cells. Medicina 55(4):114. https://doi.org/10.3390/medicina55040114

    Article  PubMed Central  Google Scholar 

  49. Clemente-Soto AF, Salas-Vidal E, Milan-Pacheco C, Sánchez-Carranza JN, Peralta-Zaragoza O, González-Maya L (2019) Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells. Mol Med Rep 19(3):2097–2106. https://doi.org/10.3892/mmr.2019.9850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.60.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Van Toan, Le Van Thu or Tran Ngoc Quyen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thoai, D., Nguyen, D.T., Dang, L.H. et al. Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels. J Polym Res 27, 369 (2020). https://doi.org/10.1007/s10965-020-02216-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02216-z

Keywords

Navigation