Skip to main content
Log in

Morphological and performance evaluation of highly sulfonated polyethersulfone/polyethersulfone membrane for oil/water separation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study includes the fabrication of highly sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blended membranes with superior properties for effective oil/water separation. In this regard membranes with different content of SPES and degree of sulfonation (DS) were fabricated. Highly sulfonated PES was synthesized by chlorosulfonic acid and concentrated sulfuric acid at low temperature. FTIR and DS analysis confirmed the presence of sulfonic acid groups on the PES backbone. The phase inversion process of membrane fabrication was studied by ternary phase diagram construction and dope solutions viscosity measurement. Fabricated membranes were characterized by SEM, water contact angle, porosity, pure water flux, and mechanical strength. The SEM images demonstrated that blended membranes have wider finger-like pores in their structure compared to bare PES membrane. Results indicated that by increasing SPES content and DS, permeability increased but mechanical strength decreased. The membranes fabricated by 50% SPES with 37% DS and 50% PES has the highest permeability (59.89 l/m2.h) with 93.3% oil rejection. Also antifouling properties of blended membranes improved remarkably compared to PES membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tawalbeh M, Al Mojjly A, Al-Othman A, Hilal N (2018) Membrane separation as a pre-treatment process for oily saline water. Desalination 447:182–202

    CAS  Google Scholar 

  2. Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW (2019) Membrane-based separation for oily wastewater: a practical perspective. Water Res 156:347–365

    CAS  PubMed  Google Scholar 

  3. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16:367–388

    CAS  Google Scholar 

  4. Nezam I, Peereboom L, Miller DJ (2019) Continuous condensed-phase ethanol conversion to higher alcohols: experimental results and techno-economic analysis. J Clean Prod 209:1365–1375

    CAS  Google Scholar 

  5. Otitoju T, Ahmad A, Ooi B (2017) Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance. J Polym Res 24:123

    Google Scholar 

  6. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews 4:37–59

    CAS  Google Scholar 

  7. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058

    CAS  Google Scholar 

  8. Alaei Shahmirzadi MA, Hosseini SS, Luo J, Ortiz I (2018) Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal. J Environ Manag 215:324–344

    CAS  Google Scholar 

  9. M.A. Shahmirzadi, S. Hosseini, Environmental aspects of brine management in seawater desalination, (2015)

  10. Luo L, Han G, Chung T-S, Weber M, Staudt C, Maletzko C (2015) Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. J Membr Sci 476:162–170

    CAS  Google Scholar 

  11. Chen Y, Jiang L (2020) Incorporation of UiO-66-NH 2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal. J Polym Res 27:1–12

    CAS  Google Scholar 

  12. Qin J-J, Li Y, Lee L-S, Lee H (2003) Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water. J Membr Sci 218:173–183

    CAS  Google Scholar 

  13. Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551

    PubMed  Google Scholar 

  14. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J Membr Sci 325:427–437

    CAS  Google Scholar 

  15. M. Zoubeik, M. Ismail, A. Salama, A. Henni, New developments in membrane technologies used in the treatment of produced water: a review, Arab J Sci Eng, (2017) 1–26

  16. Tummons EN, Tarabara VV, Chew JW, Fane AG (2016) Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. J Membr Sci 500:211–224

    CAS  Google Scholar 

  17. Hosseini SS, Fakharian Torbati S, Alaei Shahmirzadi MA, Tavangar T (2018) Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polym Adv Technol 29:2619–2631

    CAS  Google Scholar 

  18. Alaei Shahmirzadi MA, Hosseini SS, Ruan G, Tan NR (2015) Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters. RSC Adv 5:49080–49097

    CAS  Google Scholar 

  19. Shaban M, AbdAllah H, Said L, Ahmed AM (2019) Water desalination and dyes separation from industrial wastewater by PES/TiO 2 NTs mixed matrix membranes. J Polym Res 26:181

    Google Scholar 

  20. Enayatzadeh M, Mohammadi T, Fallah N (2019) Influence of TiO 2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis. J Polym Res 26:240

    CAS  Google Scholar 

  21. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, J.-L. Cortina, Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review, Chem Eng J, (2019) 123475

  22. Boshrouyeh Ghandashtani M, Tavangar T, Zokaee Ashtiani F, Karimi M, Fouladitajar A (2018) Experimental investigation and mathematical modeling of nano-composite membrane fabrication process: focus on the role of solvent type. Asia Pac J Chem Eng 13:e2260–e2260

    Google Scholar 

  23. M.A. Alaei Shahmirzadi, A. Kargari, 9 - Nanocomposite membranes, in: V.G. Gude (Ed.) Emerging Technologies for Sustainable Desalination Handbook, Butterworth-Heinemann, 2018, pp. 285–330

  24. Tavangar T, Jalali K, Shahmirzadi MAA, Karimi M (2019) Toward real textile wastewater treatment: membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation–Nanofiltration process. Sep Purif Technol 216:115–125

    CAS  Google Scholar 

  25. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Google Scholar 

  26. H. Nagar, N. Sahu, V.B. Rao, S. Sridhar, Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell, Renew Energy, (2019)

  27. Rong G, Zhou D, Pang J (2018) Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline. J Polym Res 25:66

    Google Scholar 

  28. Liu Y, Yue X, Zhang S, Ren J, Yang L, Wang Q, Wang G (2012) Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane. Sep Purif Technol 98:298–307

    CAS  Google Scholar 

  29. Blanco JF, Nguyen QT, Schaetzel P (2002) Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation. J Appl Polym Sci 84:2461–2473

    CAS  Google Scholar 

  30. Lu D, Zou H, Guan R, Dai H, Lu L (2005) Sulfonation of polyethersulfone by chlorosulfonic acid. Polym Bull 54:21–28

    CAS  Google Scholar 

  31. Tavangar T, Hemmati A, Karimi M, Ashtiani FZ (2019) Layer-by-layer assembly of graphene oxide (GO) on sulfonated polyethersulfone (SPES) substrate for effective dye removal. Polym Bull 76:35–52

    CAS  Google Scholar 

  32. Fouladitajar A, Ashtiani FZ, Okhovat A, Dabir B (2013) Membrane fouling in microfiltration of oil-in-water emulsions; a comparison between constant pressure blocking laws and genetic programming (GP) model. Desalination 329:41–49

    CAS  Google Scholar 

  33. Guan R, Zou H, Lu D, Gong C, Liu Y (2005) Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 41:1554–1560

    CAS  Google Scholar 

  34. Karimi M, Heuchel M, Albrecht W, Hofmann D (2007) A lattice-fluid model for the determination of the water/polymer interaction parameter from water uptake measurements. J Membr Sci 292:80–91

    CAS  Google Scholar 

  35. Mazinani S, Darvishmanesh S, Ehsanzadeh A, Van der Bruggen B (2017) Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology. J Membr Sci 526:301–314

    CAS  Google Scholar 

  36. Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287

    CAS  Google Scholar 

  37. T. Tavangar, M. Karimi, M. Rezakazemi, K.R. Reddy, T.M. Aminabhavi, Textile waste, Dyes/Inorganic Salts Separation of Cerium Oxide-Loaded Loose Nanofiltration Polyethersulfone Membranes, Chemical Engineering Journal, (2019) 123787

  38. Gong C, Guan R, Shu YC, Chuang FS, Tsen WC (2007) Effect of sulfonic group on solubility parameters and solubility behavior of poly (2, 6-dimethyl-1, 4-phenylene oxide). Polym Adv Technol 18:44–49

    CAS  Google Scholar 

  39. C.M. Hansen, Solubility parameters: a user’s handbook, in, CRC Press Boca Raton, 2007

  40. Yang L, Huang F, Yue Y-L (2001) Estimation of Hansen parameters of PES, PSf and their sulfonated products with various degrees of sulfonation by group contribution method. Journal of functional polymers 14:214–220

    CAS  Google Scholar 

  41. D.W. Van Krevelen, K. Te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier, 2009, Polymer Properties

  42. Feng Y, Han G, Zhang L, Chen S-B, Chung T-S, Weber M, Staudt C, Maletzko C (2016) Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymer 99:72–82

    CAS  Google Scholar 

  43. Grinic D, Giagnorio M, Cosola A, Ricceri F, Zanetti MC, Sangermano M, Tiraferri A (2018) Maximizing the degree of Sulfonation of Polysulfone supports in TFC membranes for osmotically driven processes. Macromol Mater Eng 303:1800384–1800384

    Google Scholar 

  44. Smitha B, Sridhar S, Khan AA (2003) Synthesis and characterization of proton conducting polymer membranes for fuel cells. J Membr Sci 225:63–76

    CAS  Google Scholar 

  45. Mansourizadeh A, Mohammadi M (2019) Preparation of blend hydrophilic PSF-SPEEK ultrafiltration membranes for oily wastewater treatment. Journal of Oil, Gas and Petrochemical Technology 5:76–91

    Google Scholar 

  46. Junaidi NFD, Othman NH, Shahruddin MZ, Alias NH, Marpani F, Lau WJ, Ismail AF (2020) Fabrication and characterization of graphene oxide–polyethersulfone (GO–PES) composite flat sheet and hollow fiber membranes for oil–water separation. J Chem Technol Biotechnol 95:1308–1320

    CAS  Google Scholar 

  47. Kusworo TD, Utomo DP (2017) Performance evaluation of double stage process using nano hybrid PES/SiO2-PES membrane and PES/ZnO-PES membranes for oily waste water treatment to clean water. Journal of environmental chemical engineering 5:6077–6086

    CAS  Google Scholar 

  48. Lai G, Yusob M, Lau W, Gohari RJ, Emadzadeh D, Ismail A, Goh P, Isloor A, Arzhandi MR-D (2017) Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep Purif Technol 178:113–121

    CAS  Google Scholar 

  49. Mansourizadeh A, Azad AJ (2014) Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil–water separation. J Polym Res 21:375

    Google Scholar 

  50. Sadeghi I, Aroujalian A, Raisi A, Dabir B, Fathizadeh M (2013) Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions. J Membr Sci 430:24–36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Zokaee Ashtiani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavangar, T., Zokaee Ashtiani, F. & Karimi, M. Morphological and performance evaluation of highly sulfonated polyethersulfone/polyethersulfone membrane for oil/water separation. J Polym Res 27, 252 (2020). https://doi.org/10.1007/s10965-020-02202-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02202-5

Keywords

Navigation