Skip to main content
Log in

Production of the ZnO-folic acid nanoparticles and poly(vinyl alcohol) nanocomposites: investigation of morphology, wettability, thermal, and antibacterial properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The packaging system is one of the most challenging researches, in which antibacterial agents were embedded. In this research activity, we used folic acid (FA), as a biosafe and biodegradable substance for the surface modification of zinc oxide nanoparticles (ZnO NPs). Then, the ZnO-FA NPs as nanofillers were inserted in the poly(vinyl alcohol) (PVA) with different weight percentages (2, 5, and 8 wt%, relative to polymer weight). The synthesized substances were characterized using various analyses like Ultraviolet-Visible (UV–Vis) spectroscopy, water contact angle, field emission scanning electron microscopy, and thermogravimetric analysis. The image of transmission electron microscopy analysis displayed the excellent dispersal of the ZnO-FA NPs within the polymeric matrix. By increasing the percentage of the modified ZnO NPs into the PVA, the intensity of the absorption peaks in the UV–Vis spectra was raised, and the thermal stability of NC films got better compared to the pure polymer. PVA/ZnO-FA NC film 8 wt% showed better antibacterial activity than the pure PVA and had the best resistance against Gram-positive bacteria (Staphylococcus aureus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chiellini E (2008) Environmentally compatible food packaging. Elsevier, London

    Google Scholar 

  2. Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician 8:3248–3256

    Google Scholar 

  3. Liau LC-K, Lin Y-H (2017) Effects of electric fields on the conduction of poly(vinyl alcohol) (PVA)/ZnO films by photoluminescence analysis. J Lumin 181:217–222

    CAS  Google Scholar 

  4. Mallakpour S, Khadem E (2016) Recent achievements in the synthesis of biosafe poly(vinyl alcohol) nanocomposite in: Inamuddin (ed) green polymer composites technology. Taylor & Francis Group, Boca Raton, pp 261–278

    Google Scholar 

  5. Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos Part B-eng 175:107070

    Google Scholar 

  6. Zhao J, Zhang J, Wang L, Lyu S, Ye W, Xu BB, Qiu H, Chen L, Gu J (2020) Fabrication and investigation on ternary heterogeneous MWCNT@ TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos Part A Appl Sci Manuf 129:105714

    Google Scholar 

  7. Liang C, Song P, Ma A, Shi X, Gu H, Wang L, Qiu H, Kong J, Gu J (2019) Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos Sci Technol 181:107683

    Google Scholar 

  8. SD Praveena I, Ravindrachary V, Bhajantri RF (2014) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Polym Compos 16:101–113

    Google Scholar 

  9. Saini I, Rozra J, Chandak N, Aggarwal S, Sharma PK, Sharma A (2013) Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater Chem Phys 139:802–810

    CAS  Google Scholar 

  10. Pasha SKK, Deshmukh K, Ahamed MB, Chidambaram K, Mohanapriya MK, Raj NAN (2015) Investigation of microstructure, morphology, mechanical, and dielectric properties of PVA/PbO nanocomposites. Adv Polym Technol 36:352–361

    Google Scholar 

  11. Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20:3970–3974

    CAS  Google Scholar 

  12. Liang C, Song P, Gu H, Ma C, Guo Y, Zhang H, Xu X, Zhang Q, Gu J (2017) Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Compos Part A Appl Sci Manuf 102:126–136

    CAS  Google Scholar 

  13. Sirohi S, Singh R, Jain N, Pani B, Dutt K, Nain R (2017) Synthesis and characterization of multifunctional ZnO/polyester green composite films. J Polym Res 24:193–204

    Google Scholar 

  14. Fernandes DM, Hechenleitner AAW, Lima SM, Andrade LHC, Caires ARL, Pineda EAG (2011) Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater Chem Phys 128:371–376

    CAS  Google Scholar 

  15. Hemalatha KS, Rukmani K, Suriyamurthy N, Nagabhushana BM (2014) Synthesis, characterization, and optical properties of hybrid PVA-ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    CAS  Google Scholar 

  16. Gharoy Ahangar E, Abbaspour-Fard MH, Shahtahmassebi NN, Khojastehpour M, Maddahi P (2015) Preparation and characterization of PVA/ZnO nanocomposite. J Food Process Preserv 39:1442–1451

    CAS  Google Scholar 

  17. Tang E, Cheng G, Ma X, Pang X, Zhao Q (2006) Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl Surf Sci 252:5227–5232

    CAS  Google Scholar 

  18. Chakradhar RPS, Dinesh Kumar V (2012) Water-repellent coatings prepared by modification of ZnO nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 94:352–356

    CAS  Google Scholar 

  19. Mallakpour S, Darvishzadeh M (2018) Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: optical, thermal, mechanical and morphological properties. Ultrason Sonochem 41:85–99

    CAS  PubMed  Google Scholar 

  20. Mallakpour S, Behranvand V (2015) Effect of modified ZnO capped with N-trimellitylimido-L-alanine diacid as an optically active coupling agent on the morphology and thermal properties of poly (amide-imide)/ZnO nanocomposites. Des Monomers Polym 18:79–88

    CAS  Google Scholar 

  21. Mallakpour S, Nouruzi N (2018) Evaluation of ZnO-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polym Plast Technol Eng 57:46–58

    CAS  Google Scholar 

  22. Mallakpour S, Nouruzi N (2017) Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Mater Chem Phys 197:129–137

    CAS  Google Scholar 

  23. Abdolmaleki A, Mallakpour S, Borandeh S (2014) Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis. Carbohydr Polym 103:32–37

    CAS  PubMed  Google Scholar 

  24. Vora A, Riga A, Dollimore D, Alexander KS (2002) Thermal stability of folic acid. Thermochim Acta 392–393:209–220

    Google Scholar 

  25. Palanikumar S, Kannammal L, Meenarathi B, Anbarasan R (2014) Effect of folic acid decorated magnetic fluorescent nanoparticles on the sedimentation of starch molecules. Int Nano Lett 4:104–113

    Google Scholar 

  26. Ma Y-Y, Ding H, Xiong H-M (2015) Folic acid functionalized ZnO quantum dots for targeted cancer cell imaging. Nanotechnology 26:305702

    PubMed  Google Scholar 

  27. Muhammad F, Guo M, Guo Y, Qi W, Qu F, Sun F, Zhao H, Zhu G (2011) Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. J Mater Chem 21:13406

    CAS  Google Scholar 

  28. Mallakpour S, Abdolmaleki A, Azimi F (2017) Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with thiamine and its influence on the properties of PVC/tm-MWCNTs nanocomposite films. Ultrason Sonochem 39:589–596

    CAS  PubMed  Google Scholar 

  29. Chen D, Sharma AM SK (2011) Handbook on applications of ultrasound: sonochemistry for sustainability. CRC Press, Florida

    Google Scholar 

  30. Hadisi Z, Nourmohammadi J, Nassiri SM (2018) The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int J Biol Macromol 107:2008–2019

    CAS  PubMed  Google Scholar 

  31. Mohammed MI (2018) Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J Mol Struct 1169:9–17

    CAS  Google Scholar 

  32. Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV, Chyu MK (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194:75–80

    CAS  Google Scholar 

  33. Nayunigari MK, Das R, Maity A, Agarwal S, Gupta VK (2017) Folic acid modified cross-linked cationic polymer: synthesis, characterization, and application of the removal of Congo red dye from aqueous medium. J Mol Liq 227:87–97

    CAS  Google Scholar 

  34. Hao J, Tong T, Jin K, Zhuang Q, Han T, Bi Y, Wang J, Wang X (2017) Folic acid-functionalized drug delivery platform of resveratrol based on pluronic 127/D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles. Int J Nanomedicine 12:2279–2292

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Wang Z, Wu J (2019) Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. J Polym Res 25:48–60

    Google Scholar 

  36. Lai TY, Lee WC (2009) Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol A Chem 204:148–153

    CAS  Google Scholar 

  37. Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly(vinyl alcohol) composite films embedded with biosafe and optically active poly(amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292:2857–2867

    CAS  Google Scholar 

  38. Mallakpour S, Motirasoul F (2018) Capturing Cd2+ ions from wastewater using PVA/α-MnO2-oleic acid nanocomposites. New J Chem 42:4297–4307

    CAS  Google Scholar 

  39. Guo J, Liu G, Guo Y, Tian L, Bao X, Zhang X, Yang B, Cui J (2019) Enhanced flame retardancy and smoke suppression of polypropylene by incorporating zinc oxide nanowires. J Polym Res 26:19–30

    Google Scholar 

  40. Hafez RS, El-Khiyami S (2020) Effect of copper(II) nitrate 3H2O on the crystalline, optical and electrical properties of poly (vinyl alcohol) films. J Polym Res 27:26–33

    CAS  Google Scholar 

  41. Siva Vijayakumar T, Karthikeyeni S, Vasanth S, Ganesh A, Bupesh G, Ramesh R, Manimegalai M, Subramanian P (2013) Synthesis of silver-doped zinc oxide nanocomposite by pulse mode ultrasonication and its characterization studies. J Nanosci 2013:1–7

    Google Scholar 

  42. Mallakpour S, Shafiee E (2018) A simple method for the sonochemical synthesis of PVA/ZrO2-vitamin B1 nanocomposites: morphology, mechanical, thermal and wettability investigations. Ultrason Sonochem 40:881–889

    CAS  PubMed  Google Scholar 

  43. Lin CC, Lin YC (2016) Preparation of ZnO nanoparticles using a rotating packed bed. Ceram Int 42:17295–17302

    CAS  Google Scholar 

  44. Liu G, Pang J, Huang Y, Xie Q, Guan G, Jiang Y (2017) Self-assembled nanospheres of folate-decorated zein for the targeted delivery of 10-Hydroxycamptothecin. Ind Eng Chem Res 56:8517–8527

    CAS  Google Scholar 

  45. Brown GM (1962) The biosynthesis of folic acid. J Biol Chem 237:3299–3302

    Google Scholar 

  46. Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM (2014) Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym 2014:1–7

    Google Scholar 

  47. Mallakpour S, Motirasoul F (2016) Covalent surface modification of α-MnO2 nanorods with l-valine amino acid by solvothermal strategy, preparation of PVA/α-MnO2-l-valine nanocomposite films and study of their morphology, thermal, mechanical, Pb (ii) and cd (ii) adsorption properties. RSC Adv 6:62602–62611

    CAS  Google Scholar 

  48. Sing K (2001) The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A Physicochem Eng Asp 187–188:3–9

    Google Scholar 

  49. Reddy CV, Babu B, Shim J (2018) Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J Phys Chem Solids 112:20–28

    CAS  Google Scholar 

  50. Mallakpour S, Hatami M (2017) Biosafe organic diacid intercalated LDH/PVC nanocomposites versus pure LDH and organic diacid intercalated LDH: synthesis, characterization, and removal behaviour of Cd2+ from aqueous test solution. Appl Clay Sci 149:28–40

    CAS  Google Scholar 

  51. Mallakpour S, Yazdan Nazari H (2018) The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason Sonochem 41:1–10

    CAS  PubMed  Google Scholar 

  52. Zhao T, Jiang L (2018) Contact angle measurement of natural materials. Colloids Surfaces B Biointerfaces 161:324–330

    CAS  PubMed  Google Scholar 

  53. Mallakpour S, Behranvand V (2017) Sono-assisted preparation of bio-nanocomposite for removal of Pb2+ ions: study of morphology, thermal, and wettability properties. Ultrason Sonochem 39:872–882

    CAS  PubMed  Google Scholar 

  54. Mallakpour S, Javadpour M (2017) Host recycled poly(ethylene terephthalate) and guest PVA-grafted ZnO nanoparticles: prepared nanocomposites characterization. Polym Bull 75:1–16

    Google Scholar 

  55. Xiao R, Wang W, Pan L, Zhu R, Yu Y, Li H, Liu H, Wang SL (2011) A sustained folic acid release system based on ternary magnesium/zinc/aluminum layered double hydroxides. J Mater Sci 46:2635–2643

    CAS  Google Scholar 

  56. Ahad N, Saion E, Gharibshahi E (2012) Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J Nanomater 2012:94–102

    Google Scholar 

  57. Rasad MSBA, Kumar A, Yusoff MM, Chahal S, Hussain FSJ (2016) Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous composite biomaterial for bone tissue engineering. Chem Eng Sci 144: 17–29r

  58. Yang X, Li L, Shang S, Ming TX (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435

    CAS  Google Scholar 

  59. Mersian H, Alizadeh M, Hadi N (2018) Synthesis of zirconium doped copper oxide (CuO) nanoparticles by the Pechini route and investigation of their structural and antibacterial properties. Ceram Int 44:20399–20408

    CAS  Google Scholar 

  60. Mallakpour S, Mansourzadeh S (2018) Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. Ultrason Sonochem 43:91–100

    CAS  PubMed  Google Scholar 

  61. Espitia PJP, de FF SN, dos Reis CJS, de Andrade CNJ, Cruz RS, EAA M (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity, and food packaging applications. Food Bioprocess Technol 5:1447–1464

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Affairs Division of Isfahan University of Technology (IUT), Isfahan. I. R. Iran and also, financial support from Iran Nanotechnology Initiative Council (INIC), Tehran, I. R. Iran, National Elite Foundation (NEF), Tehran, I. R. Iran, and Center of Excellence in Sensors and Green Chemistry (IUT), Isfahan, I. R. Iran. Also, the authors would like to thank Prof. K. Karami, Dr. V. Behranvand, Miss. E. Azadi, Miss. F. Sirous, Mrs. M. Abbasi, Mrs. B. Seyfi, Miss. F. Sadeghi, Miss. M. Naghdi, Dr. E. Khadem, Dr. F. Azimi, Dr. S. Rashidimoghaddam, Dr. M. Hatami, and Dr. F. Tabesh for the technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Lormahdiabadi, M. Production of the ZnO-folic acid nanoparticles and poly(vinyl alcohol) nanocomposites: investigation of morphology, wettability, thermal, and antibacterial properties. J Polym Res 27, 259 (2020). https://doi.org/10.1007/s10965-020-02200-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02200-7

Keywords

Navigation