Skip to main content
Log in

The influence of organic modified montmorillonite on the solution properties of copolymer containing β-cyclodextrin

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, organic modified montmorillonite (O-MMT) was successfully encapsulated in acrylamide (AM)/cetyl dimethyl allyl ammonium bromide (SD-16)/modified β-cyclodextrin (M-β-CD) copolymer (denoted as ASM) by in situ polymerization. The ASM/O-MMT nanocomposite was characterized by FT-IR and TGA. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) clearly proved the exfoliation/intercalation phenomena of O-MMT in the ASM matrix. The results indicated that the introduction of the O-MMT endowed the ASM with excellent thickening efficiency, temperature resistance, salt tolerance, shear resistance. The viscosity retention rate of ASM/3 wt% O-MMT at 90 °C was 55.3%, which was higher than that of pure ASM (30.9%). The ability of salt tolerance for ASM/3 wt% O-MMT nanocomposite (Na+: 40%, Ca2+: 41.3% and Mg2+: 42%) were superior to that of ASM (Na+: 18.9%, Ca2+: 21.3% and Mg2+: 20.7%). Besides, measurement of the viscoelasticity revealed that the addition of the O-MMT significantly improved the storage modulus (G’) and loss modulus (G”) of ASM, which could be attributed to the O-MMT sheets in the ASM act as physical crosslinkers between macromolecules. These results indicated that ASM/O-MMT nanocomposite was more suitable for enhancing oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Q, Wei B, Lu L, Li Y, Wen Y, Pu W, Li H, Wang C (2017) Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery. Fuel 207:352–364

    CAS  Google Scholar 

  2. Kalantariasl A, Farajzadeh R, You Z, Bedrikovetsky P (2015) Nonuniform external filter cake in long injection wells. Ind Eng Chem Res 54:3051–3061

    CAS  Google Scholar 

  3. Kamal MS, Sultan AS, Almubaiyedh UA, Hussein IA (2015) Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems. Polym Rev 55:491–530

    CAS  Google Scholar 

  4. Li Y, Ren Q (2018) Synthesis, characterization, and solution properties of a surface active hydrophobically associating polymer. J Appl Polym Sci 135:46569

    Google Scholar 

  5. Hameed N, Liu J, Guo Q (2008) Self-assembled complexes of poly(4-vinylphenol) and poly(ε-caprolactone)-block-poly(2-vinylpyridine) via competitive hydrogen bonding. Macromolecules 41:7596–7605

    CAS  Google Scholar 

  6. Zhao T, Zhang Y, Peng G, Chen Y (2019) A branched hydrophobicity associated with polyacrylamide based on silica: synthesis and solution properties. J Polym Res 26:250

    CAS  Google Scholar 

  7. Dastan S, Hassnajili S, Abdollahi E (2016) Hydrophobically associating terpolymers of acrylamide, alkylacrylamide, and methacrylic acid as EOR thickeners. J Polym Res 23:175

    Google Scholar 

  8. Li X, Shu Z, Luo P, Ye Z (2018) Associating polymer networks based on cyclodextrin inclusion compounds for heavy oil recovery. J Chem NY. https://doi.org/10.1155/2018/7218901

    Google Scholar 

  9. Zhao T, Chen Y, Li Y, Pu W, He Y (2019) Synergy between sugar-based anionic-nonionic surfactants and Ag-TiO2 nanohybrids for enhanced oil recovery. J Surfactant Deterg 22:821–832

    CAS  Google Scholar 

  10. Du D, Pu W, Tang Z, Liu R, Han S, Zhang W, Zhao B, Wei J (2018) Solution properties and displacement characteristics of core−shell hyperbranched associative polyacrylamide for enhanced oil recovery. Energy Fuel 32:8154–8166

    CAS  Google Scholar 

  11. Lee KE, Poh BT, Morad N, Teng TT (2008) Synthesis and characterization of hydrophobically modified cationic acrylamide copolymer. Int J Polym Anal Charact 13:95–107

    CAS  Google Scholar 

  12. Wei B, Romero-Zeron L, Rodrigue D (2014) Evaluation of two new self-assembly polymeric systems for enhanced heavy oil recovery. Ind Eng Chem Res 53:16600–16611

    CAS  Google Scholar 

  13. Peng C, Gou S, Wu Q, Zhou L, Zhang H, Fei Y (2019) Modified acrylamide copolymers based on β-cyclodextrin and twin-tail structures for enhanced oil recovery through host-guest interactions. New J Chem 43:5363–5373

    CAS  Google Scholar 

  14. Hao J, Gao Y, Zheng C, Liu J, Hu J, Ju Y (2018) Natural-product-tailored polyurethane: size-dictated construction of polypseudorotaxanes with cyclodextrin-triterpenoid pair. ACS Macro Lett 7:1131–1137

    CAS  Google Scholar 

  15. Loftsson T, Masson M (2001) Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm 225:15–30

    CAS  PubMed  Google Scholar 

  16. Melo PND, Barbosa EG, Caland LBD, Carpegianni H, Garnero C, Longhi M (2013) Host-guest interactions between benznidazole and beta-cyclodextrin in multicomponent complex systems involving hydrophilic polymers and triethanolamine in aqueous solution. J Mol Liq 186:147–156

    Google Scholar 

  17. Kang W, Zhu Z, Yang H, Tian S, Wang P, Zhang X, Lashari ZA (2019) Study on the association behavior of a hydrophobically modified polyacrylamide in aqueous solution based on host-guest inclusion. J Mol Liq 275:544–553

    CAS  Google Scholar 

  18. Miao T, Fenn SL, Charron PN, Oldinski RA (2015) Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromolecules 16:3740–3750

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pu W, Yang Y, Wei B, Yuan C (2016) Potential of a β-cyclodextrin/adamantane modified copolymer in enhancing oil recovery through host-guest interactions. Ind Eng Chem Res 55:8679–8689

    CAS  Google Scholar 

  20. You Q, Zhang P, Bai S, Huang W, Jia Z, Zhou C, Li D (2015) Supramolecular linear polymer formed by host-guest interactions of β-cyclodextrin dimers and polyacrylamide end-capped withadamantane. Colloids Surf A Physicochem Eng Asp 484:130–135

    CAS  Google Scholar 

  21. Li X, Zou C, Cui C (2015) Synthesis and characterization of a novel β-cyclodextrin modified cationic polyacrylamide and its application for enhancing oil recovery. Starch/Stärke 67:673–682

    CAS  Google Scholar 

  22. Zou C, Zhao P, Ge J, Lei Y, Luo P (2012) β-Cyclodextrin modified anionic and cationic acrylamide polymers for enhancing oil recovery. Carbohydr Polym 87:607–613

    CAS  Google Scholar 

  23. Dawson JI, Oreffo ROC (2013) Clay: new opportunities for tissue regeneration and biomaterial design. Adv Mater 25:4069–4086

    CAS  PubMed  Google Scholar 

  24. Xu J, Ke Y, Zhou Q, Hu X, Tan Z, Yang L, Song Y, Zhao Y, Zhang G (2014) Preparation, structure, and properties of poly(vinyl acetate-co-methyl methacrylate) nanocomposite microspheres with exfoliated montmorillonite through using two-stage in situ suspension polymerization. Polym Compos 35:1104–1116

    CAS  Google Scholar 

  25. Xu G, Chen G, Ma Y, Ke Y, Han M (2008) Rheology of a low-filled polyamide 6/montmorillonite nanocomposite. J Appl Polym Sci 108:1501–1505

    CAS  Google Scholar 

  26. Ayat M, Rahmouni A, Belbachir M, Bensaada N, Baghdadli MC, Meghabar R (2019) Thermoplastic block copolymer: α-MethylStyrene and vinyl acetate catalyzed by clay layered called Maghnite-Na+ (Algerian MMT). J Polym Res 26:230

    CAS  Google Scholar 

  27. Fogelstrom L, Malmstrom E, Johansson M, Hult A (2010) Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers. ACS Appl Mater Interfaces 2:1679–1684

    PubMed  Google Scholar 

  28. Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279:1–9

    CAS  Google Scholar 

  29. Nikolaidis AK, Achilias DS, Karayannidis GP (2012) Effect of the organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J 48:240–251

    CAS  Google Scholar 

  30. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    CAS  Google Scholar 

  31. Zhang G, Ke Y, He J, Qin M, Shen H, Lu S, Xu J (2015) Effects of organo-modified montmorillonite on the tribology. Mater Design 86:138–145

    CAS  Google Scholar 

  32. Zhao T, Xing J, Pu W, Dong Z, Yuan C, Peng G, Jin F, Xia J (2019) Synthesis and property evaluation of a novel polyacrylamide-montmorillonite composite for water shutoff and profile control in high salinity reservoirs. Polym Compos 32:368–376

    Google Scholar 

  33. Ji J, Ke Y, Pei Y, Zhang G (2017) Effects of highly exfoliated montmorillonite layers on the properties of clay reinforced terpolymer nanocomposite plugging microspheres. J Appl Polym Sci 134:44894

    Google Scholar 

  34. Singh R, Mahto V (2016) Preparation, characterization and coreflood investigation of polyacrylamide/clay nanocomposite hydrogel system for enhanced oil recovery. J Polym Sci Part B: Polym Phys 55:1051–1067

    CAS  Google Scholar 

  35. Hu X, Ke Y, Zhao Y, Yu C, Lu S, Peng F (2018) Preparation and properties of nanocomposites of β-cyclodextrin-functionalized polyacrylamide and its application for enhancing oil recovery. RSC Adv 8:30491

    CAS  Google Scholar 

  36. Diaconu G, Mičušĺk M, Bonnefond A, Paulis M, Leiza JR (2009) Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes. Marcromolecules 42:3316–3325

    CAS  Google Scholar 

  37. Jonsson M, Nordin O, Malmstrom E, Hammer C (2006) Suspension polymerization of thermally expandable core-shell particles. Polymer 47:3315–3324

    CAS  Google Scholar 

  38. Jin Y, Sun X, Xue J (2008) X-ray diffraction analysis technology. Nation Defence Industry Press, Beijing (In Chinese)

    Google Scholar 

  39. Zeynali ME, Rabii A, Baharvand H (2004) Synthesis of partially hydrolyzed polyacrylamide and investigation of solution properties (viscosity behaviour). Iran Polym J 13:479–484

    CAS  Google Scholar 

  40. He Y, Xu Z, Wu F, Qing (2014) Synthesis and evaluation of a novel Amphiphilic polymer containing β-cyclodextrin. Polym Sci Ser B 56:822–829

    CAS  Google Scholar 

  41. Bhanvase BA, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB (2012) Synthesis of exfoliated poly(styrene-co-methyl methacrylate)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization. Chem Eng J 181:770–778

    Google Scholar 

  42. Yu C, Ke Y, Deng Q, Lu S, Ji J, Hu X, Zhao Y (2018) Synthesis and characterization of polystyrene-montmorillonite nanocomposite particles using an anionic-surfactant-modified clay and their friction performance. Appl Sci 8:964

    Google Scholar 

  43. Ma J, Liang B, Cui P, Dai H, Huang RH (2003) Dilute solution properties of hydrophobically associating polyacrylamide: fitted by different equations. Polymer 44:1281–1286

    CAS  Google Scholar 

  44. Härtel A, Janssen M, Samin S, van Roij R (2015) Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination. J Phys Condens Matter 27:194129

    PubMed  Google Scholar 

  45. Hackman I, Hollaway L (2006) Epoxy-layered silicate nanocomposites in civil engineering. Composites A 37:1161–1170

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.51974339; 51674270), National Major Project (Grant No.2017ZX05009-003), Major project of the National Natural Science Foundation of China (No.51490650), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant: No.51821092; 51521063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchuan Ke.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ke, Y. The influence of organic modified montmorillonite on the solution properties of copolymer containing β-cyclodextrin. J Polym Res 27, 19 (2020). https://doi.org/10.1007/s10965-019-1990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1990-3

Keywords

Navigation