Skip to main content

Advertisement

Log in

Physico-chemical based mechanistic insight into surfactant modulated sodium Carboxymethylcellulose film for skin tissue regeneration applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Skin tissue regeneration scaffolds represent a promising field of research focused on formulation and optimization of cost-effective extracellular matrix based on natural polymers. Sodium carboxymethylcellulose is one of the most widely studied and least expensive natural polymers for fabricating film formulations aiding in skin tissue regeneration process the following damage, but its hydrophilicity contributes to its failure to prevent loss of excessive moisture from wound, low adsorb-ability, less mechanical strength, and rapid erosion. This study aims to develop a surfactant modified sodium carboxymethylcellulose-based films addressing the needs for skin wound healing applications. Sodium carboxymethylcellulose films were developed with varying concentrations of tween 80 in the range of 0.05 to 0.5% w/w and subjected to various physicochemical characterization tests like adsorption, moisture uptake, erosion, water vapor transmission, and water vapor permeability rate, vibrational, thermal and morphological analysis. The results indicated that the formulation containing 0.3% w/w of tween 80 was able to form films with a significant-good adsorb-ability, reduced percent erosion and high tensile strength with the formation of “folds” in the film surface. The vibrational and thermal analysis revealed fluidization of hydrophilic as well as hydrophobic domains which was attributed to the development of new “bonding” between the polymer and surfactant and/or plasticizer moieties in the formulation which though didn’t affect the transition temperature but significantly reduced the energy to induce transition which is envisaged to increase the elasticity of the film. This optimized combination of polymer and tween 80 may play an effective role in hastening skin regeneration process following damage. Sodium carboxymethylcellulose films with added 0.3% w/w tween 80 represent an ideal combination for the fabrication of sodium carboxymethylcellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cho DID, Yoo HJ (2015) Microfabrication methods for biodegradable polymeric carriers for drug delivery system applications: a review. J Microelectromech Syst 24:10–18. https://doi.org/10.1109/JMEMS.2014.2368071

    Article  CAS  Google Scholar 

  2. Chiang YT, Lo CL (2014) pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials 35:5414–5424. https://doi.org/10.1016/j.biomaterials.2014.03.046

    Article  CAS  PubMed  Google Scholar 

  3. Jo C, Kang H, Lee NY et al (2005) Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat Phys Chem 72:745–750. https://doi.org/10.1016/j.radphyschem.2004.05.045

    Article  CAS  Google Scholar 

  4. Sanad RAB, Abdel-Bar HM (2017) Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym 173:441–450. https://doi.org/10.1016/j.carbpol.2017.05.098

    Article  CAS  PubMed  Google Scholar 

  5. Bohl Masters KS, Leibovich SJ, Belem P et al (2002) Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair Regen 10:286–294. https://doi.org/10.1046/j.1524-475X.2002.10503.x

    Article  Google Scholar 

  6. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surfaces A Physicochem Eng Asp 313–314:183–188. https://doi.org/10.1016/j.colsurfa.2007.04.129

    Article  CAS  Google Scholar 

  7. Mohammadi MR, Rabbani S, Bahrami SH et al (2016) Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 69:1183–1191. https://doi.org/10.1016/j.msec.2016.08.032

    Article  CAS  Google Scholar 

  8. Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8:3098–3121. https://doi.org/10.15376/biores.8.2.3098-3121

    Article  Google Scholar 

  9. Park KH, Han SH, Hong JP, Han SK, Lee DH, Kim BS, Ahn JH, Lee JW (2018) Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: a phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res Clin Pract 142:335–344. https://doi.org/10.1016/j.diabres.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  10. Jeong KH, Park D, Lee YC (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24

  11. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78. https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  CAS  Google Scholar 

  12. Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286:1173–1180. https://doi.org/10.1007/s00396-008-1882-2

    Article  CAS  Google Scholar 

  13. Kelessidis VC, Poulakakis E, Chatzistamou V (2011) Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Appl Clay Sci 54:63–69. https://doi.org/10.1016/j.clay.2011.07.013

    Article  CAS  Google Scholar 

  14. Oun AA, Rhim JW (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109. https://doi.org/10.1016/j.carbpol.2015.03.073

    Article  CAS  PubMed  Google Scholar 

  15. Rowe R, Sheskey P, Quinn M (2009) Handbook of pharmaceutical excipients

  16. Sweeney IR, Miraftab M, Collyer G (2012) A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int Wound J 9:601–612. https://doi.org/10.1111/j.1742-481X.2011.00923.x

    Article  PubMed  Google Scholar 

  17. Garrett Q, Simmons PA, Xu S et al (2007) Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Investig Opthalmology Vis Sci 48:1559. https://doi.org/10.1167/iovs.06-0848

    Article  Google Scholar 

  18. Jones V, Grey J, Harding K (2006) ABC of wound healing. Wound dressings. Br Med J 332:777–780. https://doi.org/10.1136/bmj.332.7544.777

    Article  Google Scholar 

  19. Bifani V, Ramírez C, Ihl M et al (2007) Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT - Food Sci Technol 40:1473–1481. https://doi.org/10.1016/j.lwt.2006.03.011

    Article  CAS  Google Scholar 

  20. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 2:510–525. https://doi.org/10.1002/wnan.100

    Article  CAS  PubMed  Google Scholar 

  21. Mano JF, Silva GA, Azevedo HS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface

  22. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis , characterization and properties of a sodium carboxymethyl cellulose / graphene oxide nanocomposite film:687–698. https://doi.org/10.1007/s10570-012-9855-5

    Article  CAS  Google Scholar 

  23. Rippon M, White R, Davies P (2007). Skin adhesives and their role in wound dressings:3

  24. Martelli SM, Motta C, Caon T et al (2017) Edible carboxymethyl cellulose films containing natural antioxidant and surfactants: α-tocopherol stability, in vitro release and film properties. LWT - Food Sci Technol 77:21–29. https://doi.org/10.1016/j.lwt.2016.11.026

    Article  CAS  Google Scholar 

  25. Han Y, Yu M, Wang L (2018) Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag Shelf Life 15:35–42. https://doi.org/10.1016/j.fpsl.2017.11.001

    Article  Google Scholar 

  26. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702. https://doi.org/10.1016/j.ifset.2010.06.001

    Article  CAS  Google Scholar 

  27. Ghanbarzadeh B, Almasi H (2011) International journal of biological macromolecules physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int J Biol Macromol 48:44–49. https://doi.org/10.1016/j.ijbiomac.2010.09.014

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez M, Osés J, Ziani K, Maté JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39:840–846. https://doi.org/10.1016/j.foodres.2006.04.002

    Article  CAS  Google Scholar 

  29. Ziani K, Oses J, Coma V, Maté JI (2008) Effect of the presence of glycerol and tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT - Food Sci Technol 41:2159–2165. https://doi.org/10.1016/j.lwt.2007.11.023

    Article  CAS  Google Scholar 

  30. Rachtanapun P (2009) Blended films of Carboxymethyl cellulose from papaya Peel ( CMCp ) and corn starch 266:259–266

  31. Farzanian K, Ghahremaninezhad A (2018) On the effect of chemical composition on the desorption of superabsorbent hydrogels in contact with a porous Cementitious material. Gels 4:1–13. https://doi.org/10.3390/gels4030070

    Article  CAS  Google Scholar 

  32. Boateng KH, Metthews HNE, Stevens GME (2008) Wound healing dressings and drug delivery systems: a review. Int J Pharm Technol 5:2764–2786. https://doi.org/10.1002/jps.21210

    Article  CAS  Google Scholar 

  33. Andreuccetti C, Carvalho RA, Galicia-garcía T et al (2011) Gelatin-based edible films.Pdf. J. Food Eng 103:129–136

    Article  CAS  Google Scholar 

  34. Villalobos R, Hernández-Muñoz P, Chiralt A (2006) Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocoll 20:502–509. https://doi.org/10.1016/j.foodhyd.2005.04.006

    Article  CAS  Google Scholar 

  35. Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39:887–898

    Article  CAS  Google Scholar 

  36. Wong TW, Ramli NA (2014) Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydr Polym 112:367–375

    Article  CAS  Google Scholar 

  37. Ortega-toro R, Jiménez A, Talens P, Chiralt A (2014) Food hydrocolloids effect of the incorporation of surfactants on the physical properties of corn starch fi lms. Food Hydrocoll 38:66–75. https://doi.org/10.1016/j.foodhyd.2013.11.011

    Article  CAS  Google Scholar 

  38. Apel PY, Blonskaya IV, Dmitriev SN et al (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles:305302. https://doi.org/10.1088/0957-4484/18/30/305302

    Article  Google Scholar 

  39. Nga NK, Giang LT, Huy TQ et al (2013) Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids surfaces B biointerfaces:1–8. https://doi.org/10.1016/j.colsurfb.2013.11.001

    Article  CAS  Google Scholar 

  40. Kimmel HM, Grant A, Ditata J (2016) The presence of oxygen in wound healing. Wounds 28:264–270

    PubMed  Google Scholar 

  41. Ose J, Ziani K, Mate JI, Rodrı M (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films 39:840–846. https://doi.org/10.1016/j.foodres.2006.04.002

    Article  Google Scholar 

  42. Basu P (2018) Characterization and evaluation of Carboxymethyl cellulose-based films for healing of full-thickness wounds in Normal and diabetic rats. ACS Omega 3:12622–12632. https://doi.org/10.1021/acsomega.8b02015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lui YS (2012) Sustained-release of naproxen sodium from electrospun-aligned PLLA-PCL scaffolds. J Tissue Eng Regen Med 6:135–143

    Article  Google Scholar 

  44. Tong Q, Xiao Q, Lim LT (2008) Preparation and properties of pullulan-alginate-carboxymethylcellulose blend films. Food Res Int 41:1007–1014. https://doi.org/10.1016/j.foodres.2008.08.005

    Article  CAS  Google Scholar 

  45. Saurabh CK, Gupta S, Variyar PS, Sharma A (2016) Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind Crop Prod 89:109–118. https://doi.org/10.1016/j.indcrop.2016.05.003

    Article  CAS  Google Scholar 

  46. Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI (2018) Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International Journal of Biological Macromolecules 106:647–655

    Article  CAS  Google Scholar 

  47. Amim J, Leandro J, Petri DFS (2012) Effect of sorbitan-based surfactants on glass transition temperature of cellulose esters. J Therm Anal Calorim 107:1259–1265

    Article  CAS  Google Scholar 

  48. Andreuccetti C, Carvalho RA, Galicia-García T et al (2011) Effect of surfactants on the functional properties of gelatin-based edible films. J Food Eng 103:129–136. https://doi.org/10.1016/j.jfoodeng.2010.10.007

    Article  CAS  Google Scholar 

  49. dos Santos SA, Rodrigues BVM, Oliveira FC et al (2019) Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res 26:1–11. https://doi.org/10.1007/s10965-019-1706-8

    Article  CAS  Google Scholar 

  50. Mollah MZI, Akter N, Quader FB et al (2016) Biodegradable colour polymeric film (starch-chitosan) development: characterization for packaging materials. Open J Org Polym Mater 06:11–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged the Gomal University DIKhan and Higher Education Commission of Pakistan for financial and facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Rahim Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and all authors confirm agreement with the final statement.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Khan, N.R., Basit, H.M. et al. Physico-chemical based mechanistic insight into surfactant modulated sodium Carboxymethylcellulose film for skin tissue regeneration applications. J Polym Res 27, 20 (2020). https://doi.org/10.1007/s10965-019-1987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1987-y

Keywords

Navigation