Skip to main content
Log in

Dendritic polymer spherulites: birefringence correlating with lamellae assembly and origins of superimposed ring bands

  • Review Article
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dendritic spherulites are one type of diversified ways of crystal aggregations into micrometer-size consortia by kinetics-driven assembly from nanometer-size crystal plates (i.e., lamellae or single crystals). Crystallized polymers can exist in states of different degrees of order, which lead to the resulting assembled morphologies are of non-equilibrium supramolecular hierarchical patterns of crystal structures. Diffusion-controlled growth patterns emerge, which change the details of dendritic morphology depending on Tc (degree of super-cooling), polymer-diluent interactions, confinement. Investigation to the diversified patterns of lamellar assembly into polymer dendritic spherulites has come to several key conclusions. This article reviews and summarizes the top-surface-relief morphology and interior dissections of polymer dendritic spherulites, where the dendrites may be composed of ringed stripes or fibrous cilia crystals. The results yield interesting consistency for constructing workable mechanisms to account for each type of morphologies with respect to their molecular weights and crystallization kinetics conditions (i.e., Tc, space confinements, film thickness, blend interaction, as well as blend composition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Michell RM, Müller AJ (2016) Confined crystallization of polymeric materials. Prog Polym Sci 54–55:183–213. https://doi.org/10.1016/j.progpolymsci.2015.10.007

    Article  CAS  Google Scholar 

  2. Schultz JM (2012) Self-generated fields and polymer crystallization. Macromolecules. 45:6299–6323. https://doi.org/10.1021/ma202476t

    Article  CAS  Google Scholar 

  3. Norton DR, Keller A (1985) The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer. 26:704–716. https://doi.org/10.1016/0032-3861(85)90108-9

    Article  CAS  Google Scholar 

  4. Yeh CF, Su AC, Chen M, Sugimoto R (1995) Changes in optical texture of α-spherulites of isotactic polypropylene upon partial melting and recrystallization. J Polym Res 2:139–146. https://doi.org/10.1007/BF01494249

    Article  CAS  Google Scholar 

  5. Bassett DC, Vaughan AS (1984) On the lamellar morphology of melt-crystallized isotactic polystyrene. Polymer. 25:935–943. https://doi.org/10.1016/0032-3861(85)90109-0

    Article  CAS  Google Scholar 

  6. Zhang G, Zhai X, Ma Z, Jin L, Zheng P, Wang W, Cheng SZD, Lotz B (2012) Morphology diagram of single-layer crystal patterns in supercooled poly(ethylene oxide) ultrathin films: understanding macromolecular effect of crystal pattern formation and selection. ACS Macro Lett 1:217–221. https://doi.org/10.1021/mz2001109

    Article  CAS  Google Scholar 

  7. Sommer JU, Reiter G (2000) Polymer crystallization in quasi-two dimensions. II. Kinetic models and computer simulations. J Chem Phys 112:4384–4393. https://doi.org/10.1063/1.481004

    Article  CAS  Google Scholar 

  8. Crist B, Schultz JM (2016) Polymer spherulites: a critical review. Prog Polym Sci 56:1–63. https://doi.org/10.1016/j.progpolymsci.2015.11.006

    Article  CAS  Google Scholar 

  9. Liu Y-X, Chen E-Q (2010) Polymer crystallization of ultrathin films on solid substrates. Coord Chem Rev 254:1011–1037. https://doi.org/10.1016/J.CCR.2010.02.017

    Article  CAS  Google Scholar 

  10. Kuo SW (2008) Hydrogen-bonding in polymer blends. J Polym Res 15:459–486. https://doi.org/10.1007/s10965-008-9192-4

    Article  CAS  Google Scholar 

  11. Huang IH, Chang L, Woo EM (2011) Tannin induced single crystalline morphology in poly(ethylene succinate). Macromol Chem Phys 212:1155–1164. https://doi.org/10.1002/macp.201100005

    Article  CAS  Google Scholar 

  12. Gan Z, Abe H, Doi Y (2000) Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules. 1:704–712. https://doi.org/10.1021/bm0000541

    Article  CAS  PubMed  Google Scholar 

  13. Ni’mah H, Woo EM (2014) Dendritic morphology composed of stacked single crystals in poly(ethylene succinate) melt-crystallized with poly(p-vinyl phenol). Cryst Growth Des 14:576–584. https://doi.org/10.1021/cg401413f

    Article  CAS  Google Scholar 

  14. Ni’Mah H, Woo EM, Nurkhamidah S (2014) Diversification of spherulite patterns in poly(ethylene succinate) crystallized with strongly interacting poly(4-vinyl phenol). J Polym Res 21. https://doi.org/10.1007/s10965-013-0339-6

  15. Organ SJ, Hobbs JK, Miles MJ (2004) Reorganization and melting of polyethylene single crystals: complementary TEM, DSC, and real-time AFM studies. Macromolecules. 37:4562–4572. https://doi.org/10.1021/ma035955r

    Article  CAS  Google Scholar 

  16. Yen KC, Woo EM (2009) Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin. Polym Bull 62:225–235. https://doi.org/10.1007/s00289-008-0005-z

    Article  CAS  Google Scholar 

  17. Reiter G (2003) Model experiments for a molecular understanding of. J Polym Sci B Polym Phys 41:1869–1877

    Article  CAS  Google Scholar 

  18. Lugito G, Su CC, Wang YH, Woo EM (2017) Nano-assembly of intertwining lamellae of opposite bending senses in poly(ethylene oxide) co-crystallizing with poly(p-vinyl phenol). J Polym Res 24:166–167. https://doi.org/10.1007/s10965-017-1327-z

    Article  CAS  Google Scholar 

  19. Nurkhamidah S, Woo EM, Yeh YT, Luo F, Katiyar V (2018) Lamellae assembly in dendritic Spherulites of poly(L-lactic acid) crystallized with poly(p-vinyl phenol). Polymers. 10:1–21. https://doi.org/10.3390/polym10050545

    Article  CAS  Google Scholar 

  20. Woo EM, Lugito G (2016) Cracks in polymer spherulites: phenomenological mechanisms in correlation with ring bands. Polymers. 8:1–25. https://doi.org/10.3390/polym8090329

    Article  CAS  Google Scholar 

  21. Yeh YT, Woo EM (2018) Anatomy into interior lamellar assembly in nuclei-dependent diversified morphologies of poly(l -lactic acid). Macromolecules. 51:7722–7733. https://doi.org/10.1021/acs.macromol.8b01726

    Article  CAS  Google Scholar 

  22. Nurkhamidah S, Woo EM (2011) Phase-separation-induced single-crystal morphology in poly(l-lactic acid) blended with poly(1,4-butylene adipate) at specific composition. J Phys Chem B 115:13127–13138. https://doi.org/10.1021/jp206122x

    Article  CAS  PubMed  Google Scholar 

  23. Nurkhamidah S, Woo EM (2014) Oppositely synchronized lamellar bending in poly( <scp>l</scp> −lactic acid) versus poly( <scp>d</scp> −lactic acid) blended with poly(1,4-butylene adipate). Macromol Chem Phys 215:978–987. https://doi.org/10.1002/macp.201300767

    Article  CAS  Google Scholar 

  24. Nurkhamidah S, Woo EM (2012) Phase separation and lamellae assembly below UCST in poly(L -lactic acid)/poly(1,4-butylene adipate) blend induced by crystallization. Macromolecules. 45:3094–3103. https://doi.org/10.1021/ma300288v

    Article  CAS  Google Scholar 

  25. Woo EM, Lugito G, Tsai J-H, Müller AJ (2016) Hierarchically diminishing chirality effects on lamellar assembly in Spherulites comprising chiral polymers. Macromolecules. 49:2698–2708. https://doi.org/10.1021/acs.macromol.6b00350

    Article  CAS  Google Scholar 

  26. Lugito G, Woo EM (2017) Asymmetric growth of co-crystallized nano-and micrometer-sized lamellae to Janus-faced spherulites in poly(L-lactic acid) with amorphous poly(methyl methacrylate). Cryst Growth Des 17:5034–5037. https://doi.org/10.1021/acs.cgd.7b00974

    Article  CAS  Google Scholar 

  27. Woo EM, Tsai W-T, Lugito G (2017) Interior dissection on domain-dependent birefringence types of poly(3-hydroxybutyrate) Spherulites in blends. Macromolecules. 50:283–295. https://doi.org/10.1021/acs.macromol.6b02306

    Article  CAS  Google Scholar 

  28. Lugito G, Yang CY, Woo EM (2014) Phase-separation induced lamellar re-assembly and spherulite optical birefringence reversion. Macromolecules. 47:5624–5632. https://doi.org/10.1021/ma5011556

    Article  CAS  Google Scholar 

  29. Chang L, Woo EM (2011) Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid). Polymer. 52:68–76. https://doi.org/10.1016/j.polymer.2010.11.028

    Article  CAS  Google Scholar 

  30. Ni’mah H, Woo EM, Chang SM (2014) Composite banded core and non-banded shell transition patterns in stereocomplexed poly(lactide acid) induced by strongly interacting poly(p-vinyl phenol). RSC Adv 4:56294–56301. https://doi.org/10.1039/c4ra09859e

    Article  Google Scholar 

  31. Ni’mah H, Woo EM (2014) Coexisting straight, radial, and banded lamellae on the six corners of hexagon-shaped spherulites in poly( L -lactide). Macromol Chem Phys 215:1838–1847. https://doi.org/10.1002/macp.201400211

    Article  CAS  Google Scholar 

  32. Frömsdorf A, Woo EM, Lee LT, Chen YF, Förster S (2008) Atomic force microscopy characterization and interpretation of thin-film poly(butylene adipate) spherulites with ring bands. Macromol Rapid Commun 29:1322–1328. https://doi.org/10.1002/marc.200800246

    Article  CAS  Google Scholar 

  33. Woo EM, Wang L-Y, Nurkhamidah S (2012) Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) Spherulites crystallized in bulk form. Macromolecules. 45:1375–1383. https://doi.org/10.1021/ma202222e

    Article  CAS  Google Scholar 

  34. Wang Z, Li Y, Yang J, Gou Q, Wu Y, Wu X, Liu P, Gu Q (2010) Twisting of lamellar crystals in poly(3-hydroxybutyrate- co −3-hydroxyvalerate) ring-banded Spherulites. Macromolecules. 43:4441–4444. https://doi.org/10.1021/ma902773u

    Article  CAS  Google Scholar 

  35. Chang L, Chou YH, Woo EM (2011) Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Colloid Polym Sci 289:199–211. https://doi.org/10.1007/s00396-010-2330-7

    Article  CAS  Google Scholar 

  36. Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C (2006) Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stab 91:367–376. https://doi.org/10.1016/j.polymdegradstab.2005.04.035

    Article  CAS  Google Scholar 

  37. Qiu Z, Yan C, Lu J, Yang W, Ikehara T, Nishi T (2007) Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride). J Phys Chem B 111:2783–2789. https://doi.org/10.1021/jp067606f

    Article  CAS  PubMed  Google Scholar 

  38. Yang F, Qiu Z (2011) Miscibility and crystallization behavior of biodegradable poly(butylene succinate)/tannic acid blends. Ind Eng Chem Res 50:11970–11974. https://doi.org/10.1021/ie201480e

    Article  CAS  Google Scholar 

  39. Qiu Z, Komura M, Ikehara T, Nishi T (2003) Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer. 44:8111–8117. https://doi.org/10.1016/j.polymer.2003.10.030

    Article  CAS  Google Scholar 

  40. Lin JH, Woo EM (2006) Correlation between interactions, miscibility, and spherulite growth in crystalline/crystalline blends of poly(ethylene oxide) and polyesters. Polymer. 47:6826–6835. https://doi.org/10.1016/j.polymer.2006.07.039

    Article  CAS  Google Scholar 

  41. Lee J-C, Tazawa H, Ikehara T, Nishi T (1998) Miscibility and crystallization behavior of poly(butylene succinate) and poly(vinylidene fluoride) blends. Polym J 30:327–339. https://doi.org/10.1295/polymj.30.327

    Article  CAS  Google Scholar 

  42. Qiu Z, Ikehara T, Nishi T (2003) Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer. 44:2799–2806. https://doi.org/10.1016/S0032-3861(03)00149-6

    Article  CAS  Google Scholar 

  43. Qiao C, Zhao J, Jiang S, Ji X, An L, Jiang B (2005) Crystalline morphology evolution in PCL thin films, journal of polymer science. Part B: Polymer Physics 43:1303–1309. https://doi.org/10.1002/polb.20422

    Article  CAS  Google Scholar 

  44. Keith HD, Padden Jr FJ (1963) A phenomenological theory of Spherulitic crystallization. J Appl Phys 34:2409–2421. https://doi.org/10.1088/0370-1301/62/12/310

    Article  CAS  Google Scholar 

  45. Goldenfeld N (1987) Theory of spherulitic crystallization. J Cryst Growth 84:601–608. https://doi.org/10.1016/0022-0248(87)90051-0

    Article  CAS  Google Scholar 

  46. Magill J (2001) Review Spherulites: a personal perspective. J Mater Sci:3143–3164. https://doi.org/10.1023/A:101797401

  47. Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005) Growth and form of spherulites, Physical Review E - Statistical. Nonlin Soft Matt Phys 72:011605. https://doi.org/10.1103/PhysRevE.72.011605

    Article  CAS  Google Scholar 

  48. Y. O. Punin, A. G. Shtukenberg, Avtodeformatsionnye defekty kristallov (Autodeformation Defects in Crystals), (2008).[in Russian]

  49. Penn RL (2002) Imperfect oriented attachment: dislocation generation in defect-free Nanocrystals. Science. 281:969–971. https://doi.org/10.1126/science.281.5379.969

    Article  Google Scholar 

  50. Chemseddine A, Moritz T (1999) Nanostructuring Titania: control over Nanocrystal structure, size, shape, and organization. Eur J Inorg Chem 1999:235–245. https://doi.org/10.1002/(SICI)1099-0682(19990202)1999:2<235::AID-EJIC235>3.0.CO;2-N

    Article  Google Scholar 

  51. K. Tashiro, T. Yoshioka, H. Yamamoto, H. Wang, E. M. Woo, K. Funaki, H. Murase, Relationship between twisting phenomenon and structural discontinuity of stacked lamellae in the spherulite of poly(ethylene adipate) as studied by the synchrotron X-ray microbeam technique, Polym. J. 51 (2019) 131-141. https://doi.org/10.1038/s41428-018-0122-y

    Article  Google Scholar 

  52. Y. -T. Hsieh, R. Ishige,Y. Higaki, E. M. Woo, and A. Takahara, Microscopy and microbeam X-ray analyses in poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) with amorphous poly(vinyl acetate), Polymer. 55 (2014) 6906–6914. https://doi.org/10.1016/j.polymer.2014.10.058

    Article  CAS  Google Scholar 

  53. T. Tanaka, M. Fujita, A. Takeuchi, Y. Suzuki, K. Uesugi, Y. Doi, T. Iwata, Structure investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X-ray diffraction with synchrotron radiation, Polymer. 46 (2005) 5673–5679. https://doi.org/10.1016/j.polymer.2005.03.064

    Article  CAS  Google Scholar 

  54. M. Gazzano,M. L. Focarete, C. Riekel, A. Ripamonti, M. Scandola, Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction, Macromol. Chem. Phys. 202 (2001) 1405-1409. https://doi.org/10.1002/1521-3935(20010501)202:8<1405::AID-MACP1405>3.0.CO;2-5

    Article  CAS  Google Scholar 

  55. Y. Nozue, R. Kurita, S. Hirano, N. Kawasaki, S. Ueno, A. Iida, T. Nishi, Y. Amemiya, Spatial distribution of lamella structure in PCL/PVB band spherulite investigated with microbeam small- and wide-angle X-ray scattering, Polymer. 44 (2003) 6397–6405. https://doi.org/10.1016/S0032-3861(03)00591-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by basic research grants (MOST-105-2221-E-006-246-MY3 and MOST 108-2221-E-006-055) from Taiwan’s Ministry of Science and Technology (MOST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Woo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, E.M., Lugito, G. & Nagarajan, S. Dendritic polymer spherulites: birefringence correlating with lamellae assembly and origins of superimposed ring bands. J Polym Res 27, 7 (2020). https://doi.org/10.1007/s10965-019-1959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1959-2

Keywords

Navigation