Skip to main content

Advertisement

Log in

Synthesis, characterization, toxicity and in vivo imaging of lysine graft polymeric nanoparticles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymeric nanoparticles are commonly used in several biological applications. There are limited number of studies on the toxicity and potential effectiveness of polymeric nanoparticles to need for further study on polymer science. The aim of the study was to investigate characterization, in vitro, in vivo toxicity and biological distribution of Lys-graft-p(HEMA) polymeric nanoparticle. The characterization analyses showed that Lys-graft-p(HEMA) had an average size of around 171 nm and zeta potential was −22.6 mV. The sample was recorded from 750 to 4000 cm−1 in FTIR spectroscopy and the characteristic peaks of stretching band were observed in the spectrum. The polymeric nanoparticle did not show any cytotoxic effect on human embryonic kidney 293 healthy cell line (HEK 293, ATCC-CRL-1573) after 24 and 48 h of exposure. The nanoparticle did not cause mutation effects on Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains. In addition, it has not hemolitic activity on rabbit erythrocytes at applied concentration and no lethality was observed with single oral dose toxicity test. FITC-Lys-graft-p(HEMA) were observed on different organs such as liver, kidney, heart, lung and large intestine at 6. hours by in vivo imaging system. These results reveal that Lys-graft-p(HEMA) polymeric nanoparticles can be used as a potential drug carrier system because of its biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roco MC (1999) Nanoparticles and Nanotechnolgy research. J Nanopart Res 1:1–6

    Google Scholar 

  2. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical and sensor application. Chemphyschem 1:18–52

    CAS  PubMed  Google Scholar 

  3. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    CAS  PubMed  Google Scholar 

  4. Dadhich A, Sharma G, Kumar D (2012) Future effect of Nano-medicine on human generation. Int J Eng Res App 2(6):7–11

    Google Scholar 

  5. Ishihara K, Chen W, Liu Y, Tsukamoto Y, Inoue Y (2016) Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. Sci Technol Adv Mater 17(1):300–312

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

    CAS  Google Scholar 

  7. Prasad K, Nikzad M, Sbarski I (2018) Permeability control in polymeric systems: a review. J Polym Res 25:232. https://doi.org/10.1007/s10965-018-1636-x

    Article  CAS  Google Scholar 

  8. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  PubMed  Google Scholar 

  9. Manocha B, Margaritis A (2008) Production and characterization of γ-Polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28:83–99

    CAS  PubMed  Google Scholar 

  10. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24(11):979–993

    CAS  PubMed  Google Scholar 

  11. Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly (γ-glutamic acid) with L-phenylalanine as a protein carrier. J Control Release 28 108(2–3):226–236

    CAS  PubMed  Google Scholar 

  12. Buescher JM, Margaritis AM (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27:1–19

    CAS  PubMed  Google Scholar 

  13. Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78(1–3):15–24

    CAS  PubMed  Google Scholar 

  14. Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in Cancer. Clin Cancer Res 14(5):1310–1316

    CAS  PubMed  Google Scholar 

  15. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1):1–20

    CAS  PubMed  Google Scholar 

  16. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs-areview of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1):151–170

    CAS  PubMed  Google Scholar 

  17. Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharm Res 23(1):1–30. https://doi.org/10.1007/s11095-005-9046-2

    Article  CAS  PubMed  Google Scholar 

  18. Torchillin VP, Trubetskoy VS (1995) Which polymers can make nanoparticule drug carriers long-circulating. Adv Drug Deliv Rev 16(2–3):141–155

    Google Scholar 

  19. Lee D, Lee N, Kwon I (2018) Efficient loading of ophthalmic drugs with poor loadability into contact lenses using functional comonomers. Biomater Sci 6:2639–2646

    CAS  PubMed  Google Scholar 

  20. Li D, Chen H, Wang S, Wu Z, Brash JL (2011) Lysine–poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomater 7:954–958

    CAS  PubMed  Google Scholar 

  21. Gupta MK, Bajpai J, Bajpai AK (2014) The biocompatibility and water uptake behavior of superparamagnetic poly(2-hydroxyethyl methacrylate) - magnetite nanocomposites as possible nanocarriers for magnetically mediated drug delivery system. J Polym Res 21:518. https://doi.org/10.1007/s10965-014-0518-0

    Article  CAS  Google Scholar 

  22. Wang S, Lia D, Chena H, Wu Z, Xu Y, Brash JL (2013) A novel antithrombotic coronary stent: lysine-poly(HEMA)-modified cobalt–chromium stent with fibrinolytic activity. J Biomater Sci Polym Ed 24(6):684–695

    CAS  PubMed  Google Scholar 

  23. Turkcan C, Akgöl S, Denizli A (2013) Silanized polymeric nanoparticles for DNA isolation. M Sec 33:4498–4503p

    CAS  Google Scholar 

  24. Akgol S, Kaçar Y, Özkara S et al (2001) Immobilization of catalase via adsorption onto l-histidine grafted functional pHEMA based membrane. J Mol Catal B Enzym 15:197–206

    CAS  Google Scholar 

  25. Pathania D, Sharma R (2012) Synthesis and characterization of graft copolymers of methacrylic acid onto gelatinized potato starch using chromic acid initiator in presence of air. Adv Mat Lett 3(2):136–142

    Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Jim 65:55–63

    CAS  Google Scholar 

  27. OECD Guideline No 471 (1997) Bacterial reverse mutation test. Organization for Economic Cooperation and Development, Paris

  28. ASTM standard practice F 756–00 (2013): Assessment of hemolytic properties of materials

  29. Dobrovolskaia W, Clogston JD, Neun B, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187. https://doi.org/10.1021/nl0805615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiong Y, Jiang W, Shen Y, Li H, Sun C, Ouahab A, Tu J (2012) A poly (γ, L-glutamic acid)-citric acid based nanoconjugate for cisplatin delivery. Biomaterials 33:7182–7193

    CAS  PubMed  Google Scholar 

  31. OECD Guideline No 425 (2001) Acute oral toxicity: up-and-down procedure. Organization for Economic Cooperation and Development, Paris

  32. Fu Y, Fu T, Wang H et al (2014) Aspartic acid-based modified PLGA–PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater 10:4583–4596

    CAS  PubMed  Google Scholar 

  33. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Current Med Chem 17:585–594

    CAS  Google Scholar 

  35. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Denizli A, Kiremitci M, Piskin E (1988) Subcutaneous polymeric matrix system poly(HEMA-BGA) for controlled release of an anticancer drug (5-fluorouracil): I. Synthesis and structure Biomaterials 9(3):257–262

    CAS  PubMed  Google Scholar 

  37. Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly (β-amino Ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 22(12):2107–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8(2):77–84

    CAS  PubMed  Google Scholar 

  39. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3. https://doi.org/10.3402/nano.v3i0.18496

    CAS  Google Scholar 

  40. Muhamad II, Selvakumaran S, Lazim NAM (2014) Designing polymeric nanoparticles for targeted drug delivery system. Nanomed 287:287

    Google Scholar 

  41. Khodabandehloo H, Zahednasab H, Hafez AA (2016) Nanocarriers usage for drug delivery in Cancer therapy. Iran J Cancer Prev 9(2):3966

    Google Scholar 

  42. Yildirimer L, Thanh TKN, Loizidoua M, Seifalian AM (2011) Toxicological considerations of clinically applicable nanoparticles. Nano Today 6:585–607

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K (2014). Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations Biomed Res Int:498420

  44. Doak SH, Manshian B, Jenkins GJS, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 14 745(1–2):104–111. https://doi.org/10.1016/j.mrgentox.2011.09.013

    CAS  Google Scholar 

  45. Heshmati M, Arbabi Bidgoli S, Khoei S, Rezayat SM, Parivar K (2015) Mutagenic effects of Nanosilver consumer products: a new approach to physicochemical properties. IJPR 14(4):1171–1180

    CAS  PubMed  Google Scholar 

  46. Kejlova J, Labsky J, Jirova D et al (2005) Hydrophilic polymers-biocompatibility testing in vitro. Toxicol in Vitro 19:957–962

    CAS  PubMed  Google Scholar 

  47. Montheard JP, Chatzopoulos M, Chappard D (2006) 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci C, Polymer Reviews 32:1–34. https://doi.org/10.1080/15321799208018377

    Article  Google Scholar 

  48. Spagnuoloa G, D’ A’V, Cosentino C, Schmalz G, Schweikl H, Rengo S (2006) Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27:1803–1809

    Google Scholar 

  49. Rodriguez IA, Lopez-Gonzalez G, Rodríguez MA, Campos-Sanchez F, Alaminos M (2011) Biological evaluation of 2-hydroxyethylmethacrylate (HEMA) toxicity in human gingival fibroblasts with histochemical X-ray microanalysis. J Adhes Dent 13(4):375–381. https://doi.org/10.3290/j.jad.a20141

    Article  CAS  PubMed  Google Scholar 

  50. Ishak SA, Mustafa IS, Rahmana AA, Moktarb M, Minb UN (2015) A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA). AIP Conference Proceedings 1657:120004. https://doi.org/10.1063/1.4915230

    Article  CAS  Google Scholar 

  51. Morisbak E, Ansteinsson V, Samuelsen JT (2015) Cell toxicity of 2-hydroxyethyl methacrylate (HEMA): the role of oxidative stress. Eur J Oral Sci 123(4):282–287. https://doi.org/10.1111/eos.12189

    Article  CAS  PubMed  Google Scholar 

  52. Achilias DS, Siafaka PI (2017) Polymerization kinetics of poly(2-hydroxyethyl methacrylate) hydrogels nanocomposite materials. Processes 5:21. https://doi.org/10.3390/pr5020021

  53. Neun BW, Dobrovolskaia MA (2011) Method for analysis of nanoparticle hemolytic properties in vitro. Methods Mol Biol 697:215–224. https://doi.org/10.1007/978-1-60327-198-1_23

    Article  CAS  PubMed  Google Scholar 

  54. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, Reed W, RothenRutishauer B, Schurch S, Schultz H (2006) Translocation and potential neurological effects of fine and ultrafine particles. A critical update part. Fibre Toxicol 3:13

    Google Scholar 

  55. Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40:4353–4359

    CAS  PubMed  Google Scholar 

  56. Nerl HC, Cheng C, Goode AE et al (2011) Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo. Nanomed. 6:6849–6865

    Google Scholar 

  57. Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotox 6(7):746–756

    CAS  Google Scholar 

  58. Lee CM, Jeong HJ, Yun K, Kim DW, Sohn MH, Lee JK, Jayoung Jeong J, Lim ST (2012) Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomedicine 7:3203–3209

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kalimuthu S, Jeong JH, Oh JM, Ahn BC (2017) Drug discovery by molecular imaging and monitoring therapy response in lymphoma. Int J Mol Sci 18(8):1639

    PubMed Central  Google Scholar 

  60. Paniagua EF, Serramía J, Nieves JS et al (2015) Fluorescein labelled cationic carbosilane dendritic systems for biological studies. Euro Polym J 71:61–72

    Google Scholar 

  61. Wang X, Shi C, Zhang A, Bodman A, Guo D, Wang L, Hall WA, Wilkens S, Luo J (2016) Affinity-Controlled Protein Encapsulation into Sub-30 nm Telodendrimer Nanocarriers by Multivalent and Synergistic Interactions. Biomaterials. 101:258-271

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Movasaghi Z, Rehman S, Rehman I (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179

    CAS  Google Scholar 

  63. Bakan B, Güler G, Akgöl S, Karabay Yavaşoğlu NÜ (2017) Determination of the effect of polymeric nanoparticle in biological samples with ATR-FTIR spectroscopy. 3rd international Turkish congress on molecular spectroscopy (TURCMOS 2017) poster presentation. Bodrum, Turkey, august 26-29

Download references

Acknowledgements

Characterization analyses and experimental studies on animals were performed in Ege University, Drug Research and Development and Pharmacokinetic Applications (ARGEFAR).

Funding

The study is supported by Ege University BAP project (2015/ FEN/010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ulku Karabay Yavasoglu.

Ethics declarations

Declaration of interest

The authors declared no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakan, B., Kayhan, C.T., Koksal Karayildirim, C. et al. Synthesis, characterization, toxicity and in vivo imaging of lysine graft polymeric nanoparticles. J Polym Res 26, 239 (2019). https://doi.org/10.1007/s10965-019-1901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1901-7

Keywords

Navigation