Skip to main content
Log in

pH-responsive smart gels of block copolymer [pluronic F127-co-poly(acrylic acid)] for controlled delivery of Ivabradine hydrochloride: its toxicological evaluation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Pluronic F127-co-poly(acrylic acid) smart gels were fabricated by using ethylene glycol dimethacrylate (EGDMA) as cross-linker. Free radical polymerization in aqueous medium was initiated by using co-initiators ammonium persulfite (APS) and sodium hydrogen sulfate (SHS). Prepared gels were characterized for pH-sensitivity and in-vitro properties. In addition effect of reactant contents on developed formulation were evaluated by swelling behavior and drug release profile. FTIR spectra revealed the formation of new polymeric network between reactant contents. SEM assay shows rough structure of polymeric matrix which increases the surface area of gel and enhance ability to uptake fluid. TGA and DSC verified that fabricated polymeric smart gels were more thermodynamically stable than pure components. Gel fractions were increased with increase in polymer, monomer and cross-linker contents. Swelling study showed the pH dependent swelling behavior at pH 6.8 of PF127-co-AA polymeric gels. Release pattern of drug followed the first order kinetics, Higuchi and Korsmayer-Peppas models. Toxicity study was also conducted on rabbits and depicted non-toxic effects to biological system. Therefore, PF127-co-AA smart gel can be a potential candidate for the controlled delivery of Ivabradine HCl without any toxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soares GA et al (2013) Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr Polym 91(1):135–142

    Article  CAS  PubMed  Google Scholar 

  2. Malaterre V et al (2009) Benchtop-magnetic resonance imaging (BT-MRI) characterization of push–pull osmotic controlled release systems. J Control Release 133(1):31–36

    Article  CAS  PubMed  Google Scholar 

  3. Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55(3):315–328

    Article  CAS  PubMed  Google Scholar 

  4. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1):1–18

    Article  CAS  PubMed  Google Scholar 

  5. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 355(1):1–18

    Article  PubMed  CAS  Google Scholar 

  6. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  7. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  8. Soares PA et al (2015) Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym 134:673–679

    Article  CAS  PubMed  Google Scholar 

  9. Peppas N et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  10. Sohail M et al (2014) Synthesis and characterization of graft PVA composites for controlled delivery of valsartan. Lat Am J Pharm 33(8):1237–1244

    CAS  Google Scholar 

  11. Ganji F, Vasheghani-Farahani E (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88

    CAS  Google Scholar 

  12. Anwar H et al (2017) Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization. Carbohydr Polym 166:183–194

    Article  CAS  PubMed  Google Scholar 

  13. Elliott JE et al (2004) Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45(5):1503–1510

    Article  CAS  Google Scholar 

  14. Escobar-Chávez JJ et al (2006) Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy & Pharmaceutical Sciences 9(3):339–358

    Google Scholar 

  15. Chun KW et al (2005) Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26(16):3319–3326

    Article  CAS  PubMed  Google Scholar 

  16. Yuan Xiong X, Chiu Tam K, Huat Gan L (2006) Synthesis and thermally responsive properties of novel pluronic F87/polycaprolactone (PCL) block copolymers with short PCL blocks. J Appl Polym Sci 100(5):4163–4172

    Article  CAS  Google Scholar 

  17. Bromberg L (1998) Polyether-modified poly (acrylic acid): synthesis and applications. Ind Eng Chem Res 37(11):4267–4274

    Article  CAS  Google Scholar 

  18. Minhas MU et al (2013) Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. DARU Journal of Pharmaceutical Sciences 21(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sohail M et al (2015) Controlled delivery of valsartan by cross-linked polymeric matrices: synthesis, in vitro and in vivo evaluation. Int J Pharm 487(1):110–119

    Article  CAS  PubMed  Google Scholar 

  20. Najib N, Suleiman M (1985) The kinetics of drug release from ethylcellulose solid dispersions. Drug Dev Ind Pharm 11(12):2169–2181

    Article  CAS  Google Scholar 

  21. Desai SJ, Simonelli A, Higuchi W (1965) Investigation of factors influencing release of solid drug dispersed in inert matrices. J Pharm Sci 54(10):1459–1464

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52(12):1145–1149

    Article  CAS  PubMed  Google Scholar 

  23. Peppas, N., Analysis of Fickian and non-Fickian drug release from polymers. 1985

    Google Scholar 

  24. Barkat K et al (2017) Development and characterization of pH-responsive polyethylene glycol-co-poly (methacrylic acid) polymeric network system for colon target delivery of oxaliplatin: its acute oral toxicity study. Adv Polym Technol

  25. Innocenzi P et al (2009) Evaporation-induced crystallization of pluronic F127 studied in situ by time-resolved infrared spectroscopy. J Phys Chem A 114(1):304–308

    Article  CAS  Google Scholar 

  26. Hu H et al (2012) Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J Biomed Mater Res A 100(1):141–148

    Article  PubMed  CAS  Google Scholar 

  27. Ma W-D et al (2008) Pluronic F127-g-poly (acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 350(1):247–256

    Article  CAS  PubMed  Google Scholar 

  28. Wang L et al (1997) A new approach for the fabrication of an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding. Macromol Rapid Commun 18(6):509–514

    Article  CAS  Google Scholar 

  29. Huang Y et al (2012) Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 401:97–106

    Article  CAS  Google Scholar 

  30. Kim K-S, Park S-J (2010) Effect of porous silica on sustained release behaviors of pH sensitive pluronic F127/poly (acrylic acid) hydrogels containing tulobuterol. Colloids Surf B: Biointerfaces 80(2):240–246

    Article  CAS  PubMed  Google Scholar 

  31. Swapna G, Srikanth S, Rao UM (2015) Formulation and in-vitro evaluation of Ivabradine buccal tablets. Int J Trends Pharm Life Sci 1(4):457–470

    Google Scholar 

  32. Majeed A et al (2017) Development and evaluation of ivabradine hcl-loaded polymeric microspheres prepared with eudragit l100-55 (methacrylic acid-ethyl acrylate copolymer) and ethyl cellulose for controlled drug release. Acta Poloniae Pharmaceutica-Drug Research 74(2):565–578

    CAS  Google Scholar 

  33. Jin J et al (2011) Phase control of ordered mesoporous carbon synthesized by a soft-templating method. Colloids Surf A Physicochem Eng Asp 384(1):58–61

    Article  CAS  Google Scholar 

  34. Tanaka S et al (2009) Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47(11):2688–2698

    Article  CAS  Google Scholar 

  35. Park S et al (2011) Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly (acrylamide) with antibacterial property. J Ind Eng Chem 17(2):293–297

    Article  CAS  Google Scholar 

  36. Rokhade AP et al (2007) Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5-fluorouracil. J Microencapsul 24(3):274–288

    Article  CAS  PubMed  Google Scholar 

  37. Rajera R et al (2011) Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull 34(7):945–953

    Article  CAS  PubMed  Google Scholar 

  38. Hussain T, Ranjha NM, Shahzad Y (2011) Swelling and controlled release of tramadol hydrochloride from a pH-sensitive hydrogel. Designed Monomers and Polymers 14(3):233–249

    Article  CAS  Google Scholar 

  39. Mawad D, Foster JL, Lauto A (2008) Drug-delivery study and estimation of polymer–solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm 360(1):231–235

    Article  CAS  PubMed  Google Scholar 

  40. Xiong X, Tam K, Gan L (2006) Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J Nanosci Nanotechnol 6(9–1):2638–2650

    Article  CAS  PubMed  Google Scholar 

  41. Sohail K et al (2014) pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: impact of material parameters on swelling and drug release. Brazilian Journal of Pharmaceutical Sciences 50(1):173–184

    Article  CAS  Google Scholar 

  42. Lu Y et al (2009) Poly (vinyl alcohol)/poly (acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials 30(25):4143–4151

    Article  CAS  PubMed  Google Scholar 

  43. Ramelow US, Pingili S (2010) Synthesis of ethylene glycol Dimethacrylate-methyl methacrylate copolymers, determination of their reactivity ratios, and a study of dopant and temperature effects on their conductivities. Polymers 2(3):265–285

    Article  CAS  Google Scholar 

  44. Gong C et al (2009) Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: sol–gel–sol transition and drug delivery behavior. Acta Biomater 5(9):3358–3370

    Article  CAS  PubMed  Google Scholar 

  45. Changez M et al (2003) The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24(4):527–536

    Article  CAS  PubMed  Google Scholar 

  46. dos Santos J-FR et al (2008) Poly (hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4(3):745–755

    Article  PubMed  CAS  Google Scholar 

  47. Akash MSH et al (2012) Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials. Pharm Res 29(12):3475–3485

    Article  CAS  PubMed  Google Scholar 

  48. Paloma M et al (2003) Release of amoxicillin from polyionic complexes of chitosan and poly (acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24(8):1499–1506

    Article  Google Scholar 

  49. Zarzycki R, Modrzejewska Z, Nawrotek K (2010) Drug release from hydrogel matrices. Ecol Chem Enginer S 17:117–136

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, N., Ahmad, M., Minhas, M.U. et al. pH-responsive smart gels of block copolymer [pluronic F127-co-poly(acrylic acid)] for controlled delivery of Ivabradine hydrochloride: its toxicological evaluation. J Polym Res 26, 212 (2019). https://doi.org/10.1007/s10965-019-1872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1872-8

Keywords

Navigation