Skip to main content
Log in

Effects of self-assembled sorbitol-derived compounds on the structures and properties of biodegradable poly(L-lactic acid) prepared by melt blending

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The microstructures and characteristics of biodegradable poly(L-lactic acid) (PLLA) with 1,3:2,4-dibenzylidene-D-sorbitol (DBS) prepared by melt blending were investigated in this study. DBS was added as a diluent to PLLA in the melted state, leading to the disentanglement of PLLA chains and the enhancement of PLLA mobility. Upon cooling from the melt, the formation of self-assembled DBS nanofibrils enhanced the hardness and stiffness of PLLA. DBS nanofibrils were measured with diameters of 40–50 nm, as observed using scanning electron microscopy (SEM). In addition, the thermal and crystallization behaviors of PLLA were significantly influenced by the addition of DBS. The ordered and regular α-crystals of PLLA were favored when DBS was added. The crystallization rates of PLLA are tunable by varying the isothermal crystallization temperatures of PLLA and the amounts of DBS. The presence of DBS interfered with the crystallization rates of PLLA. However, at higher crystallization temperatures of PLLA, DBS facilitated the formation of nuclei, leading to an increase in the crystallization rates of PLLA. Furthermore, the hydrophilicity of PLLA was significantly improved by a further increase in DBS concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lasprilla JRA, Martinez GAR, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnol Adv 30:321–328

    Article  CAS  Google Scholar 

  2. Luckachan GE, Pillai CKS (2011) Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  3. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  4. Mujica-Garciaab A, Hooshmandc S, Skrifvarsd M, Kennyab JM, Oksmanc K, Peponi L (2016) Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Adv 6:9221–9231

    Article  Google Scholar 

  5. Ibrahim N, Jollands M, Parthasarathy R (2017) IOP Conf series. Mater Sci Eng 191:012005

    Google Scholar 

  6. Yamane H, Sasai K (2003) Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 44:2569–2575

    Article  CAS  Google Scholar 

  7. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  8. Ray SS (2012). Acc Chem Res 45:1710–1720

    Article  Google Scholar 

  9. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  CAS  Google Scholar 

  10. Lai W-C, Wu C-H (2010) Studies on the self-assembly of neat DBS and DBS/PPG organogels. J Appl Polym Sci 115:1113–1119

    Article  CAS  Google Scholar 

  11. Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter 10:2632–2640

    Article  CAS  Google Scholar 

  12. Cornwell DJ, Daubney OJ, Smith DK (2015) Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-d-sorbitol Derivatives. J Am Chem Soc 137:15486–15492

    Article  CAS  Google Scholar 

  13. Wilder EA, Hall CK, Khan SA, Spontak RJ (2003) Effects of Composition and Matrix Polarity on Network Development in Organogels of Poly(ethylene glycol) and Dibenzylidene Sorbitol. Langmuir 19:6004–6013

    Article  CAS  Google Scholar 

  14. Lai W-C, Chen C-C (2014) Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-d-sorbitol. Soft Matter 10:312–319

    Article  CAS  Google Scholar 

  15. Schamper T, Jablon M, Randhawa MH, Senatore A, Warren JD (1986). J Soc Cosmetic Chem 37:225–231

    CAS  Google Scholar 

  16. Okesola BO, Vieira VMP, Cornwell DJ, Whitelaw NK, Smith DK (2015) 1,3:2,4-Dibenzylidene-d-sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter 11:4768–4787

    Article  CAS  Google Scholar 

  17. Lai W-C, Tseng S-C (2009) Novel polymeric nanocomposites and porous materials prepared using organogels. Nanotechnology 20:475606

    Article  Google Scholar 

  18. Wang K, Zhou CJ, Tang CY, Zhang Q, Du RN, Fu Q, Li L (2009) Rheologically determined negative influence of increasing nucleating agent content on the crystallization of isotactic polypropylene. Polymer 50:696–706

    Article  CAS  Google Scholar 

  19. Feng Y, Jin X, Hay JN (1998) Effect of nucleating agent addition on crystallization of isotactic polypropylene. J Appl Polym Sci 69:2089–2095

    Article  CAS  Google Scholar 

  20. Kristiansen M, Werner M, Tervoort T, Smith P (2003) The Binary System Isotactic Polypropylene/Bis(3,4-dimethylbenzylidene)sorbitol: Phase Behavior, Nucleation, and Optical Properties. Macromolecules 36:5150–5156

    Article  CAS  Google Scholar 

  21. Lai W-C (2011) The effect of self-assembled nanofibrils on the morphology and microstructure of poly(l-lactic acid). Soft Matter 7:3844–3851

    Article  CAS  Google Scholar 

  22. Lai W-C (2011) Thermal Behavior and Crystal Structure of Poly(l-lactic acid) with 1,3:2,4-Dibenzylidene-d-sorbitol. J Phys Chem B 115:11029–11037

    Article  CAS  Google Scholar 

  23. You J, Yu W, Zhou C (2014) Accelerated Crystallization of Poly(lactic acid): Synergistic Effect of Poly(ethylene glycol), Dibenzylidene Sorbitol, and Long-Chain Branching. Ind Eng Chem Res 53:1097–1107

    Article  CAS  Google Scholar 

  24. Fujiwara T, Kimura Y (2002) Macromolecular Organization of Poly(L-lactide)-block-Polyoxyethylene into Bio-Inspired Nano-Architectures. Macromol Biosci 2:11–23

    Article  CAS  Google Scholar 

  25. Tsuji H, Muramatsu H (2001) Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). J Appl Polym Sci 81:2151–2160

    Article  CAS  Google Scholar 

  26. Howe EJ, Okesola BO, Smith DK (2015) Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients. Chem Commun 51:7451–7454

    Article  CAS  Google Scholar 

  27. Smith TL, Masilamani D (1994) The Mechanism of Action of Sugar Acetals as Nucleating Agents for Polypropylene. Macromolecules 27:3147–3155

    Article  CAS  Google Scholar 

  28. Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr Polym 74:79–85

    Article  CAS  Google Scholar 

  29. Awal A, Rana M, Sain M (2015) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mechanics of Materials Part A 80:87–95

    Article  Google Scholar 

  30. Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newtonian Fluid Mech 112:237–250

    Article  CAS  Google Scholar 

  31. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  32. Avrami MJ (1941) Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  33. Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-Molecular EcoBioNanocomposites Based on Polylactide and Cellulosic Nanowhiskers: Synthesis and Properties. Biomacromolecules 13:2013–2019

    Article  CAS  Google Scholar 

  34. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2014) Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Compos Sci Technol 90:96–101

    Article  CAS  Google Scholar 

  35. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22:3637–3646

    Article  CAS  Google Scholar 

  36. Wang C-H, Fan K-R, G-Ho H (2005) Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers. Biomaterials 26:2803–2811

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chi Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, WC., Lee, YC. Effects of self-assembled sorbitol-derived compounds on the structures and properties of biodegradable poly(L-lactic acid) prepared by melt blending. J Polym Res 26, 10 (2019). https://doi.org/10.1007/s10965-018-1670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1670-8

Keywords

Navigation