Skip to main content
Log in

Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose -g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Despite abundant researches on petroleum based polymer nanocomposites over micro and macro composites, these nanocomposites suffer from deprived biodegradability, highly inherent flammability and less mechanical strength. The present work describes the preparation of a biodegradable nanocomposite based on carboxymethyl cellulose-g-polyacrylonitrile (CMC-g-PAN) and montmorillonite (MMT) nanoclay by using ammonium persulfate (APS) as an initiator, methylene bis-acrylamide (MBA) as a crosslinker via emulsifier free emulsion polymerisation. The formation of the nanocomposites was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Transmission electron microscope (TEM) analysis. The formation of CMC-g-PAN copolymer was confirmed by means of proton nuclear magnetic resonance (1H NMR) spectra. The improvement in thermal stability of the nanocomposites over copolymer was outstanding. More importantly, incorporating MMT enables the nanocomposite to achieve a dramatically reduced peak heat release rate of 536 ± 03 kW m−2 shown in cone calorimetry tests and higher limiting oxygen index (LOI) value indicating improved fire retardancy. In addition, the tensile strength of the nanocomposite was also increased by around 41% with 5% w/v MMT contents. This is explained on the basis of strong interfacial adhesion between CMC and MMT through PAN. Meanwhile for its better commercialization, the eco-friendly nature was studied via biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS (2011) Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem 127:1496–1502

    Article  CAS  Google Scholar 

  2. Sahoo PK, Samal R, Swain SK, Rana PK (2008) Synthesis of poly (butyl acrylate)/sodium silicate nanocomposite fire retardant. Euro Polym J 44:3522–3528

    Article  CAS  Google Scholar 

  3. Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8:973–978

    Article  CAS  PubMed  Google Scholar 

  4. Okamo M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503

    Article  Google Scholar 

  5. Saurabh CK, Gupta S, Bahadur J, Mazumder S, Variyar PS, Sharma A (2013) Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydr Polym 98:1610–1617

    Article  CAS  PubMed  Google Scholar 

  6. Cervin NT, Andersson L, Ng JBS, Olin P, Bergstrom L, Wagberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511

    Article  CAS  PubMed  Google Scholar 

  7. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  8. Wang Q, Guo J, Xu D, Cai J, Qiu Y, Ren J, Zhang L (2015) Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose 22:3799–3810

    Article  CAS  Google Scholar 

  9. Zhao J, Zhang X, Tu R, Lu C, He X, Zhang W (2014) Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose 21:1859–1872

    Article  CAS  Google Scholar 

  10. Gupta KC, Sahoo S, Khandekar K (2002) Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium. Biomacromolecules 3:1087–1094

    Article  CAS  PubMed  Google Scholar 

  11. Takacs E, Wojnarovits L, Borsa J, Racz I (2010) Hydrophilic/hydrophobic character of grafted cellulose. Radiat Phys Chem 79:467–470

    Article  CAS  Google Scholar 

  12. Mukherjee A, Halder S, Datta D, Anupam K, Hazra B, Mandal MK, Halder G (2017) Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy. J Adv Res 8:173–183

    Article  Google Scholar 

  13. Boruah M, Gogoi P, Manhar AK, Khannam M, Mandal M, Dolui SK (2014) Biocompatible carboxymethylcellulose-g-poly(acrylic acid)/OMMT nanocomposite hydrogel for in vitro release of vitamin B12. RSC Adv 4:43865–43873

    Article  CAS  Google Scholar 

  14. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  15. Yang XH, Zhu WL (2007) Viscosity properties of sodium carboxymethyl cellulose solutions. Cellulose 14:409–417

    Article  CAS  Google Scholar 

  16. Taghizadeh MT, Sabouri N (2013) Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites. Int Nano Letters 3:51–58

    Article  Google Scholar 

  17. Farag S, Al-Afaleq EI (2002) Preparation and characterization of saponified delignified cellulose polyacrylonitrile-graft copolymer. Carbohydr Polym 48:1–5

    Article  CAS  Google Scholar 

  18. Pourjavadi A, Zohuriaan-Mehr MJ (2002) Modification of carbohydrate polymers via grafting in air. 2. Ceric-initiated graft copolymerization of acrylonitrile onto natural and modified polysaccharides. Starch 54:482–488

    Article  CAS  Google Scholar 

  19. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217

    Article  CAS  Google Scholar 

  20. Samal B, Rana PK, Sahoo PK (2008) Preparation and characterization of biodegradable Waterabsorbent PAN/SS nanocomposite. Polym Compos 29:1203–1209

    Article  CAS  Google Scholar 

  21. Strawhecker KE, Manias E (2000) Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12:2943–2949

    Article  CAS  Google Scholar 

  22. Jena DK, Sahoo PK (2018) Development of biodegradable cellulose-g-poly(butyl acrylate)/kaolin nanocomposite with improved fire retardancy and mechanical properties. J Appl Polym Sci 135:45968–45975

    Article  Google Scholar 

  23. Lin JJ, Cheng IJ, Wang R, Lee RJ (2001) Tailoring basal Spacings of montmorillonite by poly(oxyalkylene)diamine intercalation. Macromolecules 34:8832–8834

    Article  CAS  Google Scholar 

  24. Wang L, Xie X, Su S, Feng J, Wilkie CA (2010) A comparison of the fire retardancy of poly (methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polym Degrad Stab 95:572–578

    Article  CAS  Google Scholar 

  25. Alekseeva OV, Rodionova AN, Bagrovskaya NA, Agafonov AV, Noskov AV (2017) Effect of the Organobentonite filler on structure and properties of composites based on hydroxyethyl cellulose. J Chem 2017:1603937, 11 pages. https://doi.org/10.1155/2017/1603937

    Article  CAS  Google Scholar 

  26. Chou CC, Lin JJ (2005) One-step exfoliation of montmorillonite via phase inversion of amphiphilic copolymer emulsion. Macromolecules 38:230–233

    Article  CAS  Google Scholar 

  27. Choi YS, Wang KH, Xu M, Chung IJ (2002) Synthesis of exfoliated Polyacrylonitrile/Na−MMT nanocomposites via emulsion polymerization. Chem Mater 14:2936–2939

    Article  CAS  Google Scholar 

  28. Stretz HA, Wootan MW, Cassidy PE, Koo JH (2005) Effect of exfoliation on poly(styrene-co-acrylonitrile)/montmorillonite nanocomposite flammability. Polym Adv Technol 16:239–248

    Article  CAS  Google Scholar 

  29. Shami Z, Sharifi-Sanjani N (2010) The role of na-montmorillonite on thermal characteristics and morphology of electrospun pan nanofibers. Fibers Polym 11:695–699

    Article  CAS  Google Scholar 

  30. Zahedi Y, Fathi-Achachlouei B, Yousefi AR (2018) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol 108:863–873

    Article  CAS  PubMed  Google Scholar 

  31. Qiu H, Yu J (2008) Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: preparation and water absorbency. J Appl Polym Sci 107:118–123

    Article  CAS  Google Scholar 

  32. Samal B, Sahoo PK (2007) Nonconventional emulsion polymerization of acrylonitrile catalyzed by in situ metal complex. Chin J Polym Sci 25:145–152

    Article  CAS  Google Scholar 

  33. Sahoo PK, Bhattacharjee SP, Samal RK (1985) Influence of cu(II)/salicylaldehyde couple on potassium monopersulphate decomposition and acrylonitrile polymerization in solution. Euro Polym J 21:499–503

    Article  CAS  Google Scholar 

  34. Samal R, Sahoo PK (2010) Synthesis of a biodegradable polyacrylonitrile/sodium silicate nanocomposite fire retardant. Ind J. Chem Tech 17:139–144

    CAS  Google Scholar 

  35. Vermani OP, Narula AK (1989) Applied Chemistry (Theory and Practical) Wiley Eastern Ltd, New Delhi, India, 36

  36. Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56

    Article  CAS  PubMed  Google Scholar 

  37. Jena DK, Sahoo PK (2018) Simultaneous improvement of mechanical and fire retardant properties of synthesised biodegradable guar gum-g-poly(butyl acrylate)/montmorillonite nanocomposite. Polym Degrad Stab 154:37–45

    Article  CAS  Google Scholar 

  38. Patil AS, Gadad AP, Hiremath RD, Joshi SD (2018) Biocompatible tumor micro-environment responsive CS-g-PNIPAAm co-polymeric nanoparticles for targeted Oxaliplatin delivery. J Polym Res 25:77–89

    Article  Google Scholar 

  39. Ho FFL, Klosiewict DW (1980) Proton nuclear magnetic resonance spectrometry for determination of substituents and their distribution in Carboxymethylcellulose. Anal Chem 52:913–916

    Article  CAS  Google Scholar 

  40. Minagawa M, Ute K, Kitayama T, Hatada K (1994) Determination of Stereoregularity of γ-Irradiation Canal polymerized Polyacrylonitrile by 1H 2D J-resolved NMR spectroscopy. Macromolecules 27:3669–3671

    Article  CAS  Google Scholar 

  41. Grassie N, Torrence BJD, Fortune JD, Gemmel JD (1965) Reactivity ratios for the copolymerization of acrylates and methacrylates by nuclear magnetic resonance spectroscopy. Polymer 6:653–658

    Article  CAS  Google Scholar 

  42. Pitchumani S, Reddy CR, Rajadurai S (1982) Reactivity ratios of ethyl acrylate, n-butyl methacrylate copolymer system by 1H-NMR. J Polym Sci, Polym Chem Ed 20:277–282

    Article  CAS  Google Scholar 

  43. Chiu CW, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485

    Article  CAS  Google Scholar 

  44. Uthirakumar P, Nahm KS, Hahn YB, Lee YS (2004) Preparation of polystyrene/montmorillonite nanocomposites using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. Eur Polym J 40:2437–2444

    Article  CAS  Google Scholar 

  45. Yin H, Chen H, Chen D (2010) Morphology and mechanical properties of polyacrylonitrile/ attapulgite nanocomposite. J Mater Sci 45:2372–2380

    Article  CAS  Google Scholar 

  46. Gilman JW, Kashiwagi T (2000) Polymer-Clay Nanocomposites edited by T J Pinnavaia & G W Beall (John Wiley & Sons: New York), 193

  47. Samal R, Sahoo PK (2009) Development of a biodegradable rice straw-g-poly(methyl methacrylate)/sodium silicate composite flame retardant. J Appl Polym Sci 113:3710–3715

    Article  CAS  Google Scholar 

  48. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques - a review. Chemosphere 73:429–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by UGC-BSR fellowship, Govt, of India to DKJ (SRF) [F.No.25-1/2014-15(BSR)/7-175/2007/(BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Sahoo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.K., Jena, D.K. Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose -g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite. J Polym Res 25, 260 (2018). https://doi.org/10.1007/s10965-018-1659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1659-3

Keywords

Navigation